GENIUS HIGH SCHOOL :: BHUVANAGIRI

FORMATIVE ASSESSMENT - I

Class:X	Time: 1Hr
Subject :MATHEMATICS	Max marks: 40

SECTION 1

 $10 \times 1 = 10 \text{ m}$

1. The decimal representation of

Wii

- a) terminate after 1 decimal place
- b) terminate after 2 decimal place
- c) terminate after 3 decimal place
- d) not terminate
 - 2. The product of non zero rational and irrational is:
- a) always irrational
- b) always rational
- c)rational or irrational
- d) one
 - 3. Which of the following is not irrational?
- (a) $(3 + \sqrt{7})$
- (b) $(3 \sqrt{7})$
- (c) $(3 + \sqrt{7})(3 \sqrt{7})$
- (d) $3\sqrt{7}$
 - 4. The addition of a rational number and an irrational number is equal to:
- (a) rational number
- (b) Irrational number
- (c) Both
- (d) None of the above
- 5. Euclid's division lemma states that for two positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy
- (a) 1 < r < b
- (b) $0 < r \le b$
- (c) $0 \le r < b$
- (d) 0 < r < b
 - 6. What is the quadratic polynomial whose sum and the product of zeroes is $\sqrt{2}$, $\frac{1}{3}$ respectively?
- (a) $3x^2-3\sqrt{2}x+1$
- (b) $3x^2+3\sqrt{2}x+1$
- (c) $3x^2+3\sqrt{2}x-1$

(d) None of the above	
7. The degree of the polynomial, $x^4 - x^2 + 2$ is	
(a) 2	
(b) 4	
(c) 1	
(d) 0	
8. A polynomial of degree n has:	
(a) Only one zero	
(b) At least n zeroes	
(c) More than n zeroes	
(d) At most n zeroes	
9 A quadratic polynomial, whose zeroes are -3 and 4, is	
(a) $x^2 - x + 12$	
(b) $x^2 + x + 12$	
(c) $(x^2/2) - (x/2) - 6$	
(d) $2x^2 + 2x - 24$	
10. If a pair of linear equations is consistent, then the lines are:	
(a) Parallel	
(b) Always coincident	
(c) Always intersecting	
(d) Intersecting or coincident	
$\frac{\text{SECTION 2}}{6 \times 2 = 12 \text{m}}$	
11. Does the polynomial $2x^2-5x^2+3$ have real zeroes?	
Or	
The lines $2x+y=3$, $4x+2y=6$ are ?	
12. factorise $4x^2-3x-1$	
13. Product of the two numbers is 180 and their H.C.F is 3 find their L.C.M	
Or	
Find H.C.F of 28 and 144 by Euclid Lemma	
14. If the sum of the zeroes of the quadratic polynomial 3x²-kx+6 is 3 then find the value of k	
15. For what values of k, the pair of linear equations $3x+y=3$, $6x+ky=8$,	
does not have a solution	
Or	
Find a line equation which is parellel to $4x+3y=14$	
16. Given that root 2 is irrational, prove that 5+3root2 Is irrational	

- 17. Find the value of k such that the polynomial x^2 -(k+6)x+ 2(2k-1) such that sum of the zeroes is equal to half to their product
- 18. Solve the following pair of linear equations by the substitution method.
- (i) x + y = 14x - y = 4
- 19. Compute the zeroes of the polynomial $4x^2 4x 8$. Also, establish a relationship between the zeroes and coefficients.
- 20. Show that square of any positive integer is in the form of 4q or 4q +1 for some integer q

Or

Show that 6 power n, cannot end with zero for any natural number n

- 21 .prove that root 2 is irrational
- 22. A fraction becomes 9/11 if 2 is added to both the numerator and the denominator. If, 3 is added to both the numerator and the denominator it becomes 5/6. Find the fraction.

Or

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs.27 for a book kept for seven days, while Susy paid Rs.21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.