(8th Class)

Chemistry : Valency & Ions

\_\_\_\_\_

# **1. VALENCY TRENDS IN PERIODIC TABLE**

|           |                                    |                                                         | SOLUTIONS          |                                                               |
|-----------|------------------------------------|---------------------------------------------------------|--------------------|---------------------------------------------------------------|
|           |                                    | TEA                                                     | CHING TASK         |                                                               |
|           |                                    | JEE MAIN                                                | S LEVEL QUES       | STIONS                                                        |
| 1.        | When carbon<br>(CH <sub>4</sub> )? | combines with hy                                        | drogen, what is th | ne valency of carbon in methane                               |
|           | a) 1                               | b) 2                                                    | c) 3               | d) 4                                                          |
|           | swer:D                             |                                                         | 1 1 (0114)         |                                                               |
| Sol<br>2. |                                    |                                                         | , ,                | showing tetravalency.<br>nes with hydrogen to form phos-      |
|           | a) 1                               | b) 2                                                    | c) 3               | d) 4                                                          |
|           | swer:C                             |                                                         |                    |                                                               |
| Sol<br>3. | -                                  | n reacts with oxyg                                      |                    | H3), showing trivalency.<br>n dioxide, what is the valency of |
|           | a) 2                               | b) 4                                                    | c) 3               | d) 5                                                          |
|           | swer:B                             |                                                         |                    |                                                               |
| Sol       | coordinate bo                      | nd).                                                    |                    | 4 (total bonds = 4, considering                               |
| 4.        | valency of chl                     | orine in the comp                                       | ound?              | orine dioxide ( $ClO_2$ ), what is the                        |
|           | a) 1                               | b) 2                                                    | c) 3               | d) 4                                                          |
|           | swer:D                             | aborra 14 orridatio                                     | n stata (tatal han | $d_{\alpha} = 4$                                              |
| 5.        |                                    | shows +4 oxidation                                      | •                  |                                                               |
| 5.        | a) 2                               | b) 4                                                    | c) 6               | e valency of sulfur?<br>d) 8                                  |
| An        | swer:C                             | 0) 1                                                    | 0,0                | 4)0                                                           |
|           |                                    | ms 6 bonds (doub                                        | le bonds with each | n oxygen), showing hexavalency.                               |
| 6.        |                                    | alency of phospho                                       |                    | bines with oxygen to form phos-                               |
|           | a) 2                               | b) 3                                                    | c) 4               | d) 5                                                          |
| An        | swer:D                             | ,                                                       | ,                  |                                                               |
| Sol<br>7. | What is the r                      | sphorus forms 5 b<br>naximum number<br>evel of an atom? | , –                | ency = 5).<br>t can be accommodated in the                    |
|           | a. 2                               | b. 8                                                    | c. 18              | d. 32                                                         |
| An        | swer:C                             | ~. •                                                    |                    |                                                               |
|           |                                    | has subshells (s.p                                      | ,d) accommodatin   | $\log 2 + 6 + 10 = 18$ electrons.                             |
|           |                                    |                                                         |                    | drogen sulfide (H.S), what is the                             |

8. When sulfur combines with hydrogen to form hydrogen sulfide ( $H_2S$ ), what is the

| 8th | Class                                                                                                   |                                              | (                              | Chemistry : Valency & Ions |
|-----|---------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|----------------------------|
|     | valency of sulfur?                                                                                      |                                              |                                |                            |
|     | a) 1                                                                                                    | b) 2                                         | c) 3                           | d) 4                       |
| Ans | swer:B                                                                                                  |                                              |                                |                            |
| Sol | ution:Sulfur forms 2                                                                                    | 2 bonds with hydro                           | ogen (H2S), showin             | ng divalency.              |
| 9.  | In the compound rus?                                                                                    | PCl <sub>3</sub> (phosphorus                 | trichloride), what i           | s the valency of phospho-  |
|     | a. 1                                                                                                    | <b>b</b> . 2                                 | c. 3                           | d. 4                       |
| Ans | swer:C                                                                                                  |                                              |                                |                            |
| Sol | ution:Phosphorus f                                                                                      | orms 3 bonds with                            | chlorine (PCl3), sł            | nowing trivalency          |
| 10. | In the compound                                                                                         | Cl <sub>2</sub> O <sub>7</sub> (dichlorine h | neptoxide), what is            | the total valency of chlo- |
|     | rine atoms?                                                                                             |                                              |                                |                            |
|     | a. 14                                                                                                   | b. 7                                         | c. 10                          | d. 5                       |
| Ans | swer:A                                                                                                  |                                              |                                |                            |
| Sol | ution: Each Cl has                                                                                      | +7 oxidation state                           | $(total valency = 7 \times 2)$ | 2 = 14).                   |
| 11. | The valencies of t                                                                                      | he underlined elem                           | ents or radicals in            | the following compounds.   |
|     | $\underline{\mathrm{Na}_{2}}\mathrm{O}$ , $\underline{P}Cl_{5}$ , $\underline{\mathrm{Ca}}\mathrm{O}$ , | $\underline{Al}(OH)_{3}$                     |                                |                            |
|     | A) 1,5,2,1                                                                                              | B) 2,5,2,3                                   | C) 2,3,2,1                     | D) 1,5,2,3                 |
| Ans | swer:D                                                                                                  |                                              |                                |                            |
| Sol | ution:The valencies                                                                                     | are: 1 (Na), 5 (P), 2                        | 2 (Ca), 3 (Al).                |                            |

# JEE ADVANCED LEVEL QUESTIONS

#### **MULTIPLE CORRECT ANSWER TYPE**

- Which elements from the alkali metal group are known to have a valency of 1 1. when forming hydrides? (Select all correct options)
- tend. Rubidium b. Sodium c. Potassium a. Lithium

## Answer:A,B,C,D

- Solution: Alkali metals (Group 1) all have 1 valence electron and form hydrides (e.g., LiH, NaH, KH, RbH) with valency = 1.
- 2. Elements with a valency of 3 when combining with hydrogen include:

a. Boron b. Aluminum c. Nitrogen d. Phosphorus

# Answer:A,B,C,D

- Solution:Boron (B) and Aluminum (Al) from Group 13 show valency = 3 in hydrides (e.g.,  $BH_3$ ,  $AlH_3$ ).
- Nitrogen (N) and Phosphorus (P) from Group 15 typically form hydrides (NH<sub>3</sub>, PH<sub>3</sub>) with valency = 3, but their primary valency is determined by their group (5). The question specifies combining with hydrogen, so N and P are also correct if considering their hydrides.
- 3. Which of the following atomic numbers shows Valency of 2
- A) 4 B) 14 C) 12 D) 20

# Answer:A,C,D

Solution: Atomic number 4 (Beryllium, Be): Group  $2 \rightarrow$  Valency = 2. Atomic number 12 (Magnesium, Mg): Group  $2 \rightarrow$  Valency = 2.

2

Atomic number 20 (Calcium, Ca): Group  $2 \rightarrow$  Valency = 2. Atomic number 14 (Silicon, Si): Group 14  $\rightarrow$  Valency = 4 (not 2)

# **REASON AND ASSERTION TYPE**

4. Assertion: Valency is the combining capacity of an atom based on its electrons in the outermost shell.

Reason: The valency of oxygen is determined by its outermost electron shell, and it tends to form two bonds to achieve a stable electron configuration.

# Answer:A

Solution:Assertion is true: Valency depends on the outermost (valence) electrons.

Reason is true and explains the Assertion: Oxygen (Group 16) has 6 valence electrons and gains 2 electrons (or shares 2 electrons) to achieve stability, showing a valency of 2.

5. Assertion: Oxygen generally exhibits a valency of 2.

Reason: Oxygen has six electrons in its outer shell, and to achieve a stable configuration, it tends to gain two electrons or share electrons with other atoms.

## Answer:A

Solution: Assertion is true: Oxygen commonly forms 2 bonds (e.g., H<sub>2</sub>O, CO<sub>2</sub>).

Reason correctly explains why: Oxygen needs 2 more electrons to complete its octet (6 valence electrons + 2 = 8).

6. Assertion: Group 1 elements, such as sodium and potassium, exhibit a valency of 1 when combining with hydrogen.

Reason: Group 1 elements have one electron in their outer shell, and they readily lose this electron to achieve a stable configuration, forming compounds with a valency of 1.

# Answer:A

Solution:Assertion is true: Alkali metals (Group 1) form hydrides (e.g., NaH, KH) with valency = 1.

Reason explains the Assertion: They lose 1 valence electron to achieve stability, resulting in +1 valency.

7. Assertion: Chlorine exhibits a valency of 1 when combining with other elements.

Reason: Chlorine has seven electrons in its outer shell and tends to gain one electron to achieve a stable octet, resulting in a valency of 1.

# Answer:A

Solution:Assertion is true: Chlorine (Group 17) typically shows valency = 1 (e.g., HCl, NaCl).

Reason explains the Assertion: Chlorine gains 1 electron to complete its octet (7 + 1 = 8).

8. Assertion: Group 17 elements, including fluorine and bromine, share a similar valency trend with chlorine when combining with other elements.

Reason: Group 17 elements have seven electrons in their outer shell and generally gain one electron to achieve a stable octet, leading to a common valency trend of 1 when combining with other elements.

#### Answer:A

8th Class

Solution:Assertion is true: All halogens (Group 17) typically show valency = 1 (e.g., HF, HBr).

Reason explains the Assertion: They all have 7 valence electrons and gain 1 electron to achieve stability.

#### STATEMENT TYPE

9. Statement-I : Halogens have 7 Valence electrons

**Statement-II :** Halogens shows valency 7

#### Answer:C

Solution:Statement-I is true: Halogens (Group 17: F, Cl, Br, I) have 7 valence electrons.

Statement-II is false: Halogens typically show a valency of 1, not 7, because they gain 1 electron to achieve a stable octet (7 + 1 = 8).

10. Statement-I: Elements having 1, 2 or 3 valency electrons are metals

Statement-II : Hydrogen has valency 1

#### Answer:B

Solution:Statement-I is true: Most metals (e.g., Na, Mg, Al) have 1, 2, or 3 valence electrons.

Exception: Hydrogen (1 valence electron) is a non-metal.

Statement-II is true: Hydrogen has valency 1, but this does not explain why elements with 1-3 valence electrons are metals.

#### COMPREHENSION TYPE

#### **COMPREHENSION-1**

A neutral atom of an element has a nucleus with nuclear charge 11 times and mass 23 times that of hydrogen.

11. Write the electronic configuration of the element

(A) 2, 1 B) 2, 8, 1 C) 2, 8 D) 2, 8, 8, 3

#### Answer:B

Solution: Atomic number =  $11 \rightarrow 11$  electrons in a neutral atom.

(Topic- Valency & Electropositive Ions )

(8th Class)

| Eleo         | ctronic configuration                          | $1S^2 2S^2 2P^6 3S^2 \rightarrow 2$ | 2, 8, 1 (K, L, M she               | ells).                                  |
|--------------|------------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------|
|              | Find the ratio of e                            |                                     |                                    |                                         |
|              | A) 1 : 1                                       | -                                   | C) 10 : 11                         |                                         |
| Ans          | swer:C                                         |                                     |                                    |                                         |
|              |                                                | •                                   | ectron to achieve n                | oble gas configuration).                |
|              | tons: 11 (unchange                             | d).                                 |                                    |                                         |
|              | ctrons: 11 - 1 = 10.<br>io (electrons : protor | ns) = 10.11                         |                                    |                                         |
|              | MPREHENSION-II                                 | 113) - 10.11                        |                                    |                                         |
| 16.          | When hydrogen co<br>atoms to oxygen a          |                                     | en to form water, wi               | hat is the ratio of hydrogen            |
|              | A) 1:1                                         | B) 2:1                              | C) 1:2                             | D) 2:2                                  |
| Ans          | swer:B                                         |                                     |                                    |                                         |
| Sol          | ution:Water (H <sub>2</sub> O):2               | hydrogen atoms of                   | combine with 1 oxy                 | vgen atom.                              |
| Rat          | io (H : O) = 2 : 1.                            |                                     |                                    |                                         |
| 17.          | When oxygen com                                | bines with chlorin                  | e, the common val                  | ency ratio is:                          |
|              | a) 1:1                                         | b) 1:2                              | c) 2:1                             | d) 2:2                                  |
| Ans          | swer:B                                         |                                     |                                    |                                         |
| Sol          | ution:Oxygen (O) ha                            | is a valency of 2 (f                | ro <mark>m H<sub>2</sub>O).</mark> |                                         |
| Chl          | orine (Cl) has a vale                          | ency of 1 (from HC                  | 1).                                |                                         |
| To           | balance valencies in                           | a compound:                         |                                    |                                         |
| 1 O          | atom (valency 2) co                            | mbines with 2 Cl                    | atoms (valency 1 e                 | ach) $\rightarrow \text{Cl}_2\text{O}.$ |
| Val          | ency ratio (O : Cl) =                          | 1:2.                                |                                    |                                         |
| INT          | EGER TYPE                                      |                                     |                                    |                                         |
|              | Valency Exhibited                              | by Nitrogen in N                    | <sub>2</sub> O <sub>5</sub> is     |                                         |
|              | swer:5                                         | 1 .1                                |                                    | 1 ·/ 1 · <del>-</del> ·/                |
|              | shares 5 electrons                             | to form bonds.                      |                                    | and its valency is 5 as it              |
|              | Valency exhibited                              | by metals are                       |                                    |                                         |
|              | wer:1,2,3                                      | ally lose electrons                 | to attain a stable                 | noble gas configuration.                |
| 501          | Most metals show                               |                                     |                                    | noble gas configuration.                |
| 2 <b>(</b> e | .g., Mg, Ca, Zn)                               | , -                                 | · · · ·                            |                                         |
|              | .g., Al, Fe <sup>3+</sup> )                    |                                     |                                    |                                         |
|              | TRIX MATCHING                                  | IYPE                                |                                    |                                         |
| 20.          | Answer:A                                       |                                     |                                    |                                         |

| 611 | ~ `     |  |
|-----|---------|--|
| xTD |         |  |
| oun | Ciuss — |  |

| Column I                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         | Colu                                                                                                                                                                                                                                                   | ımn II                                                                                                           |                                                                                                                                        |                                               |                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|--|
| Element                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        | Valency                                                                                                          |                                                                                                                                        |                                               |                       |  |
| (A) Lea                                                                                                                                                                                                                                                         | d                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        | (R)                                                                                                              | 2,4                                                                                                                                    |                                               |                       |  |
| (B) Car                                                                                                                                                                                                                                                         | bon                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        | (R)                                                                                                              | 2,4                                                                                                                                    |                                               |                       |  |
| (C) Cob                                                                                                                                                                                                                                                         | oolt                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        | (P)                                                                                                              | 2,3                                                                                                                                    |                                               |                       |  |
| (D) Mer                                                                                                                                                                                                                                                         | cury                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        | (Q)                                                                                                              | 1,2                                                                                                                                    |                                               |                       |  |
| A) A-R B-R                                                                                                                                                                                                                                                      | C-P D-Q                                                                                                                                                                                                                                                                                                 | B)                                                                                                                                                                                                                                                     | A-R                                                                                                              | B-R C-S                                                                                                                                | D-P                                           |                       |  |
| C) A-S B-P                                                                                                                                                                                                                                                      | ,Q C-R D-P                                                                                                                                                                                                                                                                                              | D)                                                                                                                                                                                                                                                     | A-S                                                                                                              | B-P,Q,R,S                                                                                                                              | C-R                                           | D-Q                   |  |
| Solution:Lead (l                                                                                                                                                                                                                                                | Pb)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| Common valenc                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| (e.g., PbO (lead(                                                                                                                                                                                                                                               | II) oxide) and Pl                                                                                                                                                                                                                                                                                       | bO <sub>2</sub> (lead(IV) oxi                                                                                                                                                                                                                          | de))                                                                                                             |                                                                                                                                        |                                               |                       |  |
| Carbon (C)                                                                                                                                                                                                                                                      | · · · · 0 1                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| Common valenc                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         | $CO_{(oorbon(IV))}$                                                                                                                                                                                                                                    | ovida))                                                                                                          |                                                                                                                                        |                                               |                       |  |
| (e.g., CO (carbo<br>Cobalt (Co)                                                                                                                                                                                                                                 | initi oxide) allu                                                                                                                                                                                                                                                                                       | $CO_2$ (Carbon( $IV$ )                                                                                                                                                                                                                                 | UNICE                                                                                                            |                                                                                                                                        |                                               |                       |  |
| Common valenc                                                                                                                                                                                                                                                   | ies: 2, 3                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| (e.g., CoCl2 (cob                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                         | and CoCl <sub>3</sub> (coba                                                                                                                                                                                                                            | alt(III) c                                                                                                       | chloride))                                                                                                                             |                                               |                       |  |
| Mercury (Hg)                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         | 3 .                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| Common valenc                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| (e.g., Hg_Cl_ (me                                                                                                                                                                                                                                               | ercury(I) chlorid                                                                                                                                                                                                                                                                                       | e) and HgCl <sub>2</sub> (m                                                                                                                                                                                                                            | ercury                                                                                                           | (II) chloride)                                                                                                                         | )                                             |                       |  |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                        |                                               |                       |  |
| ( 0 , <u>0</u> 2 <u>2</u> (                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         | LEARNERS                                                                                                                                                                                                                                               | TASK                                                                                                             |                                                                                                                                        |                                               |                       |  |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         | <b>LEARNER</b> S                                                                                                                                                                                                                                       | TASK                                                                                                             |                                                                                                                                        |                                               |                       |  |
|                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         | LEARNERS<br>DERSTANDII                                                                                                                                                                                                                                 |                                                                                                                  | 5                                                                                                                                      | (CU)                                          | Q'S)                  |  |
| CONC                                                                                                                                                                                                                                                            | EPTUAL UN                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        | NG QI                                                                                                            |                                                                                                                                        | •                                             | Q'S)                  |  |
| CONC                                                                                                                                                                                                                                                            | EPTUAL UN                                                                                                                                                                                                                                                                                               | DERSTANDI                                                                                                                                                                                                                                              | NG QI                                                                                                            |                                                                                                                                        | •                                             | Q'S)                  |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A                                                                                                                                                                                                                         | <b>EPTUAL UN</b><br>electrons can o<br>b. 4                                                                                                                                                                                                                                                             | <b>DERSTANDII</b><br>ccupy the first e<br>c. 6                                                                                                                                                                                                         | NG QI<br>energy                                                                                                  | UESTIONS<br>level of an a<br>d. 8                                                                                                      | tom?                                          |                       |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A                                                                                                                                                                                                                         | <b>EPTUAL UN</b><br>electrons can o<br>b. 4                                                                                                                                                                                                                                                             | <b>DERSTANDII</b><br>ccupy the first e<br>c. 6                                                                                                                                                                                                         | NG QI<br>energy                                                                                                  | UESTIONS<br>level of an a<br>d. 8                                                                                                      | tom?                                          |                       |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first                                                                                                                                                                                                   | <b>EPTUAL UN</b><br>electrons can o<br>b. 4                                                                                                                                                                                                                                                             | <b>DERSTANDII</b><br>ccupy the first e<br>c. 6                                                                                                                                                                                                         | NG QI<br>energy                                                                                                  | UESTIONS<br>level of an a<br>d. 8                                                                                                      | tom?                                          |                       |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro                                                                                                                                                                   | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio                                                                                                                                                                                     | <b>DERSTANDII</b><br>ccupy the first e<br>c. 6<br>K-shell) can holo<br>n of calcium wit                                                                                                                                                                | NG QI<br>energy<br>d a mat                                                                                       | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 o<br>nic number 2                                                                      | tom?<br>electro<br>20, is                     | ns (as per th         |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro                                                                                                                                                                   | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio                                                                                                                                                                                     | <b>DERSTANDIN</b><br>ccupy the first e<br>c. 6<br>K-shell) can hole                                                                                                                                                                                    | NG QI<br>energy<br>d a mat                                                                                       | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 o<br>nic number 2                                                                      | tom?<br>electro<br>20, is                     | ns (as per the        |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro<br>A) 2, 8<br>Answer:C                                                                                                                                            | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2                                                                                                                                                                       | <b>DERSTANDIN</b><br>ccupy the first e<br>c. 6<br>K-shell) can hole<br>on of calcium wit<br>2, 9, 9 C)                                                                                                                                                 | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,                                                                   | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 o<br>nic number 2<br>8, 2 D)                                                           | tom?<br>electro<br>20, is<br>2, 10            | ns (as per th         |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro<br>A) 2, 8<br>Answer:C<br>Solution:Calcium                                                                                                                        | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows                                                                                                                                                   | <b>DERSTANDIN</b><br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>s the 2, 8, 8, 2 d                                                                                                                           | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu                                                        | <b>UESTIONS</b><br>level of an a<br>d. 8<br>ximum of 2 of<br>nic number 2<br>8, 2 D)                                                   | tom?<br>electro<br>20, is<br>2, 10<br>e the t | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to                                                                                                          | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize                                                                                                                               | DERSTANDIN<br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>s the 2, 8, 8, 2 d<br>es at 8 before fill                                                                                                           | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the                                            | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 o<br>nic number 2<br>8, 2 D)<br>tration (since<br>e next shell).                       | tom?<br>electro<br>20, is<br>2, 10<br>e the f | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t                                                                                         | EPTUAL UN<br>electrons can o<br>b. 4<br>st energy level (l<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elec                                                                                                                 | <b>DERSTANDIN</b><br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>s the 2, 8, 8, 2 d<br>es at 8 before fill<br>ctronic configur                                                                                | NG Q<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is                                 | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 o<br>nic number 2<br>8, 2 D)<br>tration (since<br>e next shell).                       | tom?<br>electro<br>20, is<br>2, 10<br>e the f | ns (as per th         |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t<br>A) Be (3) =                                                                          | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elec<br>2, 1                                                                                                  | DERSTANDIN<br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>n of calcium wit<br>2, 9, 9 C)<br>the 2, 8, 8, 2 d<br>s the 2, 8, 8, 2 d<br>s at 8 before fill<br>ctronic configur<br>B) O (8) = 1                                                     | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is<br>2, 6                        | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 of<br>hic number 2<br>8, 2 D)<br>tration (since<br>e next shell).<br>s not wrong       | tom?<br>electro<br>20, is<br>2, 10<br>e the f | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electro<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t<br>A) Be (3) =<br>C) S (16) =                                                           | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elec<br>2, 1                                                                                                  | <b>DERSTANDIN</b><br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>s the 2, 8, 8, 2 d<br>es at 8 before fill<br>ctronic configur                                                                                | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is<br>2, 6                        | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 of<br>hic number 2<br>8, 2 D)<br>tration (since<br>e next shell).<br>s not wrong       | tom?<br>electro<br>20, is<br>2, 10<br>e the f | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electron<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t<br>A) Be (3) =<br>C) S (16) =<br>Answer:B                                              | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elec<br>2, 1<br>2, 6, 8                                                                                       | DERSTANDIN<br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>the 2, 8, 8, 2 co<br>is the 2, 8, 8, 2 co<br>is at 8 before fill<br>ctronic configur<br>B) O (8) = 1<br>D) Ca (20)                                  | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is<br>2, 6<br>= 2, 8,             | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 of<br>hic number 2<br>8, 2 D)<br>tration (since<br>e next shell).<br>s not wrong<br>10 | tom?<br>electro<br>20, is<br>2, 10<br>e the t | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electron<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t<br>A) Be (3) =<br>C) S (16) =<br>Answer:B<br>Solution:(A) Be (3)                       | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (level (level)<br>$^2$ , where n=1).<br>nic configuratio<br>$^3$ , 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elevel<br>2, 1<br>2, 6, 8<br>(4) = 2, 1 $\rightarrow$ (Be                                             | DERSTANDIN<br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>the 2, 8, 8, 2 c<br>s at 8 before fill<br>ctronic configur<br>B) O (8) = 1<br>D) Ca (20)<br>thas 4 electrons                                        | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is<br>2, 6<br>= 2, 8,             | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 of<br>hic number 2<br>8, 2 D)<br>tration (since<br>e next shell).<br>s not wrong<br>10 | tom?<br>electro<br>20, is<br>2, 10<br>e the t | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula $2n$<br>2. The electron<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t<br>A) Be (3) =<br>C) S (16) =<br>Answer:B<br>Solution:(A) Be (3)<br>(B) O (8) = 2, 6 | <b>EPTUAL UN</b><br>electrons can o<br>b. 4<br>st energy level (I<br><sup>2</sup> , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elect<br>2, 1<br>2, 6, 8<br>(4) = 2, 1 $\rightarrow$ (Be<br>$\rightarrow$ (Correct for c                      | DERSTANDIN<br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>the 2, 8, 8, 2 co<br>is the 2, 8, 8, 2 co<br>is at 8 before fill<br>ctronic configur<br>B) O (8) = 1<br>D) Ca (20)<br>is has 4 electrons<br>oxygen) | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is<br>2, 6<br>= 2, 8,             | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 of<br>hic number 2<br>8, 2 D)<br>tration (since<br>e next shell).<br>s not wrong<br>10 | tom?<br>electro<br>20, is<br>2, 10<br>e the t | ns (as per th<br>), 8 |  |
| CONC<br>1. How many<br>a. 2<br>Answer:A<br>Solution:The first<br>formula 2n<br>2. The electron<br>A) 2, 8<br>Answer:C<br>Solution:Calcium<br>hold up to<br>3. Which of t<br>A) Be (3) =<br>C) S (16) =<br>Answer:B<br>Solution:(A) Be (3)                       | <b>EPTUAL</b> UN<br>electrons can o<br>b. 4<br>st energy level ( $l^2$ , where n=1).<br>nic configuratio<br>5, 10 B) 2<br>m (Z=20) follows<br>18 but stabilize<br>he following elect<br>2, 1<br>2, 6, 8<br>(4) = 2, 1 $\rightarrow$ (Be<br>$\rightarrow$ (Correct for c<br>, 8 $\rightarrow$ (Correct o | DERSTANDIN<br>ccupy the first e<br>c. 6<br>K-shell) can hold<br>on of calcium wit<br>2, 9, 9 C)<br>the 2, 8, 8, 2 c<br>s at 8 before fill<br>ctronic configur<br>B) O (8) = 1<br>D) Ca (20)<br>thas 4 electrons<br>oxygen)<br>config: 2, 8, 6)         | NG QI<br>energy<br>d a mat<br>th atom<br>2, 8,<br>configu<br>ling the<br>ation is<br>2, 6<br>= 2, 8,<br>s, corre | UESTIONS<br>level of an a<br>d. 8<br>ximum of 2 of<br>hic number 2<br>8, 2 D)<br>tration (since<br>e next shell).<br>s not wrong<br>10 | tom?<br>electro<br>20, is<br>2, 10<br>e the t | ns (as per th<br>), 8 |  |

| 4.                                                                                                             | Class)                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chemistry : Valency & Ions                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                              | Valency electro                                                                                                                                                                                                                                                                                                                                                                                              | ns and valency res                                                                                                                                                                                                                                                                                                  | pectively in Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
|                                                                                                                | A) 7,0                                                                                                                                                                                                                                                                                                                                                                                                       | B) 8,0                                                                                                                                                                                                                                                                                                              | C) 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D) 0,82.                                                                                                                                                                                              |
| An                                                                                                             | swer:B                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
| Sol                                                                                                            | ution:Argon is a                                                                                                                                                                                                                                                                                                                                                                                             | noble gas with 8 va                                                                                                                                                                                                                                                                                                 | lence electrons ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd 0 valency (stable octet).                                                                                                                                                                          |
| 5.                                                                                                             | The valency of                                                                                                                                                                                                                                                                                                                                                                                               | hydrogen is one in                                                                                                                                                                                                                                                                                                  | PH <sub>a</sub> . What is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | valency of nitrogen                                                                                                                                                                                   |
|                                                                                                                | A) 1                                                                                                                                                                                                                                                                                                                                                                                                         | B) 2                                                                                                                                                                                                                                                                                                                | °C) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D) 4                                                                                                                                                                                                  |
| An                                                                                                             | swer:C                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                     |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              | drogen has a valend                                                                                                                                                                                                                                                                                                 | cy of 1, and phos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | phorus forms 3 bonds, so it                                                                                                                                                                           |
| 6.                                                                                                             | Given figure rep                                                                                                                                                                                                                                                                                                                                                                                             | presents an atom of                                                                                                                                                                                                                                                                                                 | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
|                                                                                                                | A) chlorine                                                                                                                                                                                                                                                                                                                                                                                                  | B) magnesium                                                                                                                                                                                                                                                                                                        | C) calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D) Wrong structure                                                                                                                                                                                    |
| Ans                                                                                                            | swer:D                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
| Sol                                                                                                            | ution:Electron di                                                                                                                                                                                                                                                                                                                                                                                            | stribution wrong                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
| 1st                                                                                                            | shell only 2 elec                                                                                                                                                                                                                                                                                                                                                                                            | trons but there are                                                                                                                                                                                                                                                                                                 | 4 electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |
| 7.                                                                                                             | Valence electro                                                                                                                                                                                                                                                                                                                                                                                              | ns and valency res                                                                                                                                                                                                                                                                                                  | pectivelv in calciu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                                                                                                                                     |
|                                                                                                                | A) 2, 1                                                                                                                                                                                                                                                                                                                                                                                                      | B) 2, 2                                                                                                                                                                                                                                                                                                             | C) 8, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D) 2, 8                                                                                                                                                                                               |
| Δ                                                                                                              | swer:B                                                                                                                                                                                                                                                                                                                                                                                                       | 2, 2                                                                                                                                                                                                                                                                                                                | 0, 0, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) 2, 0                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
|                                                                                                                | ution Calcium ha                                                                                                                                                                                                                                                                                                                                                                                             | s 2 valence electro                                                                                                                                                                                                                                                                                                 | ns (in the 4th she                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II) and a valency of 2 (loses )                                                                                                                                                                       |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                     | ns (in the 4th she                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ll) and a valency of 2 (loses 2                                                                                                                                                                       |
| Sol                                                                                                            | electrons to for                                                                                                                                                                                                                                                                                                                                                                                             | m Ca²+).                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |
|                                                                                                                | electrons to for<br>Two atoms of h                                                                                                                                                                                                                                                                                                                                                                           | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is                                                                                                                                                                                                                                                   | rith one atom of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II) and a valency of 2 (loses 2 xygen to form a molecule of                                                                                                                                           |
| Sol                                                                                                            | electrons to for<br>Two atoms of h<br>water. The vale                                                                                                                                                                                                                                                                                                                                                        | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is                                                                                                                                                                                                                                                   | rith one atom of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xygen to form a molecule of                                                                                                                                                                           |
| Sol<br>8.                                                                                                      | electrons to for<br>Two atoms of h<br>water. The vale<br>A) 3                                                                                                                                                                                                                                                                                                                                                | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is                                                                                                                                                                                                                                                   | rith one atom of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xygen to form a molecule of                                                                                                                                                                           |
| Sol <sup>:</sup><br>8.<br><b>An</b> :                                                                          | electrons to for<br>Two atoms of h<br>water. The vale<br>A) 3<br>swer:B                                                                                                                                                                                                                                                                                                                                      | m Ca²+).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1                                                                                                                                                                                                                                                        | rith one atom of o<br>al $O_{C)}e_2$ ating Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xygen to form a molecule of <sup>Sten</sup> D) 4                                                                                                                                                      |
| Sol<br>8.<br><b>An:</b><br>Sol                                                                                 | electrons to for<br>Two atoms of h<br>water. The vale<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eac                                                                                                                                                                                                                                                                                             | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms                                                                                                                                                                                                                      | with one atom of one of $O_{C)} = 2^{10}$ Synthesis of the second secon | xygen to form a molecule of <sup>Stem</sup> D) 4<br>ency is 1.                                                                                                                                        |
| Sol<br>8.<br><b>An</b> :<br>Sol                                                                                | electrons to for<br>Two atoms of h<br>water. The vale<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?                                                                                                                                                                                                                                                              | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element                                                                                                                                                                                                 | with one atom of or<br>$O_{C} = 2^{110}$ Sy<br>1 bond, so its values<br>s (atomic numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav                                                                                                        |
| Sol<br>8.<br>An:<br>Sol<br>9.                                                                                  | electrons to for<br>Two atoms of h<br>water. The vale<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?<br>A) C (6)                                                                                                                                                                                                                                                  | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms                                                                                                                                                                                                                      | with one atom of or<br>$O_{C} = 2^{110}$ Sy<br>1 bond, so its values<br>s (atomic numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav                                                                                                        |
| Sol<br>8.<br>An:<br>Sol<br>9.                                                                                  | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br>swer:B<br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br>swer:C                                                                                                                                                                                                                                              | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)                                                                                                                                                                                    | with one atom of or<br>$O_{C} = 2^{110}$ Sy<br>1 bond, so its values<br>s (atomic numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav                                                                                                        |
| Sol <sup>:</sup><br>8.<br><b>An:</b><br>9.<br><b>An:</b><br>Sol <sup>:</sup>                                   | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In $H_2O$ , eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$                                                                                                                                                                                                        | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4                                                                                                                                                                       | with one atom of or<br>$O_{C} = 2^{110}$ Sy<br>1 bond, so its values<br>s (atomic numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav                                                                                                        |
| Sol<br>8.<br><b>An:</b><br>Sol<br>9.<br><b>An:</b><br>Sol                                                      | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br>swer:B<br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br>swer:C<br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency                                                                                                                                                                             | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5                                                                                                                                                           | vith one atom of o<br>1 O <sub>C</sub> 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav                                                                                                        |
| Sol<br>8.<br><b>An:</b><br>Sol<br>9.<br><b>An:</b><br>Sol<br>(B)<br>(C)                                        | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In $H_2O$ , eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency                                                                                                                                       | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electro                                                                                                                                 | vith one atom of o<br>1 O <sub>C</sub> 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav                                                                                                        |
| Sol <sup>1</sup><br>8.<br><b>An:</b><br>Sol <sup>1</sup><br>9.<br>Sol <sup>1</sup><br>(B)<br>(C)<br>(D)        | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In $H_2O$ , eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Ar (18) $\rightarrow$ Valency                                                                                                      | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electrocy 0 (noble gas)                                                                                                                 | vith one atom of o<br>$O_{C} 2^{+}$ 2<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xygen to form a molecule of<br><sup>Sten</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)                                                                                          |
| Sol <sup>1</sup><br>8.<br><b>An:</b><br>Sol <sup>1</sup><br>9.<br>Sol <sup>1</sup><br>(B)<br>(C)<br>(D)        | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>A neutral atom                                                                                                            | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electro<br>cy 0 (noble gas)<br>n of an element has                                                                                      | vith one atom of o<br>1 O <sub>C</sub> 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times and                                                           |
| Sol <sup>1</sup><br>8.<br><b>An:</b><br>Sol <sup>1</sup><br>9.<br>Sol <sup>1</sup><br>(B)<br>(C)<br>(D)        | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In $H_2O$ , eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Ar (18) $\rightarrow$ Valency<br>Mage (12) $\rightarrow$ Valency<br>A neutral atom<br>mass 27 time                                 | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electricy 0 (noble gas)<br>n of an element has<br>that of hydrogen r                                                                    | vith one atom of o<br>1 O <sub>C</sub> 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xygen to form a molecule of<br><sup>Sten</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times and                                                           |
| Sol <sup>1</sup><br>8.<br><b>An:</b><br>Sol <sup>1</sup><br>9.<br>Sol <sup>1</sup><br>(B)<br>(C)<br>(D)        | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Ar (18) $\rightarrow$ Valency<br>A neutral atom<br>mass 27 time<br>stable positively                                      | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electrony<br>cy 0 (noble gas)<br>n of an element has<br>that of hydrogen r<br>y charged ion                                             | vith one atom of o<br>1 O <sub>C</sub> ) 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a<br>nucleus. How ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times and<br>ny electrons would be in it                            |
| Sol<br>8.<br><b>An:</b><br>Sol<br>9.<br>Sol<br>(B)<br>(C)<br>(D)<br>10.                                        | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Ar (18) $\rightarrow$ Valency<br>A neutral atom<br>mass 27 time<br>stable positively<br>A) 27                             | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electricy 0 (noble gas)<br>n of an element has<br>that of hydrogen r                                                                    | vith one atom of o<br>1 O <sub>C</sub> 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xygen to form a molecule of<br><sup>Stem</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times and                                                           |
| Sol <sup>1</sup><br>8.<br>Sol <sup>2</sup><br>9.<br><b>An:</b><br>Sol <sup>1</sup><br>(B)<br>(C)<br>(D)<br>10. | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In H <sub>2</sub> O, eace<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Ar (18) $\rightarrow$ Valency<br>A neutral atom<br>mass 27 time<br>stable positively<br>A) 27<br><b>swer:D</b>           | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electrony<br>cy 0 (noble gas)<br>n of an element has<br>that of hydrogen r<br>y charged ion<br>B) 14                                    | vith one atom of o<br>1 O <sub>C</sub> ) 2 ting Sy<br>1 bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a<br>nucleus. How ma<br>C) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xygen to form a molecule of<br><sup>Sten</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times and<br>ny electrons would be in it<br>D) 10                   |
| Sol<br>8.<br><b>An:</b><br>Sol<br>9.<br><b>An:</b><br>Sol<br>(C)<br>(D)<br>10.<br><b>An:</b><br>Sol            | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In $H_2O$ , eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>An eutral atom<br>mass 27 time<br>stable positively<br>A) 27<br><b>swer:D</b><br>ution:Nuclear ch | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) = 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electrony<br>cy 0 (noble gas)<br>n of an element has<br>that of hydrogen r<br>y charged ion<br>B) 14<br>arge = +13 $\rightarrow$ Atom | rith one atom of o<br>C) 2<br>bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a<br>nucleus. How ma<br>C) 13<br>ic number (Z) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xygen to form a molecule of<br><sup>Sten</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times an<br>ny electrons would be in it<br>D) 10<br>.3 (Aluminium). |
| Sol<br>8.<br><b>An:</b><br>Sol<br>9.<br><b>An:</b><br>Sol<br>(C)<br>(D)<br>10.<br><b>An:</b><br>Sol            | electrons to for<br>Two atoms of h<br>water. The value<br>A) 3<br><b>swer:B</b><br>ution:In $H_2O$ , eac<br>Which of the<br>valency 2 ?<br>A) C (6)<br><b>swer:C</b><br>ution:(A) C (6) $\rightarrow$<br>P (15) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>Mg (12) $\rightarrow$ Valency<br>An eutral atom<br>mass 27 time<br>stable positively<br>A) 27<br><b>swer:D</b><br>ution:Nuclear ch | m Ca <sup>2+</sup> ).<br>ydrogen combine w<br>ency of hydrogen is<br>B) 1<br>ch hydrogen forms<br>following element<br>B) P (15)<br>Valency 4<br>y 3 or 5<br>ncy 2 (loses 2 electrony<br>cy 0 (noble gas)<br>n of an element has<br>that of hydrogen r<br>y charged ion<br>B) 14                                    | rith one atom of o<br>C) 2<br>bond, so its vale<br>s (atomic numb<br>C) Mg (12)<br>ons) ?<br>a nucleus with a<br>nucleus. How ma<br>C) 13<br>ic number (Z) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xygen to form a molecule of<br><sup>Sten</sup> D) 4<br>ency is 1.<br>er given in brackets) hav<br>D) Ar (18)<br>nuclear charge 13 times an<br>ny electrons would be in it<br>D) 10<br>.3 (Aluminium). |

(Topic-Valency & Electropositive Ions)

7

8th Class)

Electrons in  $Al^{3+} = 13 - 3 = 10$ . JEE MAIN LEVEL QUESTIONS 1. In the compound ammonia  $(NH_3)$ , what is the valency of nitrogen? a) 1 c) 3 b) 2 d) 4 Answer:C Solution:In NH<sub>3</sub>, nitrogen forms 3 covalent bonds with hydrogen. Valency = Number of bonds formed = 3. What is the valency of chlorine when it reacts with hydrogen to form hydrochloric 2. acid (HCl)? a) 1 b) 2 c) 3 d) 4 Answer:A Solution: In HCl, chlorine forms 1 covalent bond with hydrogen. Valency = Number of bonds formed = 1. When magnesium reacts with hydrogen to form magnesium hydride (MgH<sub>2</sub>), what 3. is the valency of magnesium? a) 1 c) 3 d) 4 b) 2 Answer:B Solution: In MgH<sub>2</sub>, magnesium forms 2 ionic bonds with hydrogen (H<sup>-</sup>). Valency = Number of electrons lost = 2. When nitrogen reacts with oxygen to form nitrogen dioxide, what is the valency of 4. nitrogen in the compound? a) 2 b) 4 c) 3 d) 5 Answer:B Solution: In NO2, nitrogen forms 4 covalent bonds (two double bonds with oxygen or resonance structures). Valency = Number of bonds formed = 4. In the compound AlCl<sub>3</sub> (aluminum trichloride), what is the valency of aluminum? 5. a. 1 b. 2 d. 4 c. 3 Answer:C Solution: In AlCl<sub>3</sub>, aluminum forms 3 ionic bonds with chlorine (Al<sup>3+</sup>). Valency = Number of electrons lost = 3. What is the valency of chlorine in the compound  $CCl_{4}$  (carbon tetrachloride)? 6. a. -1 b. 0 c. +1 d. +4 Answer:A Solution: Chlorine is in Group 17 (halogens) and usually has a valency of -1 (it gains 1 electron to achieve stability). In CCl<sub>4</sub>, each chlorine forms one single bond with carbon, meaning it contributes 1 electron to the bond. Thus, chlorine's oxidation state (valency) is -1 (since it is more electronegative than carbon). 7. Valency of sulphur in  $SO_2$  and  $SO_3$  is C) 2,3 A) 4,6 B) 6,4 D) 3,2

Topic- Valency & Electropositive Ions

8

Chemistry : Valency & Ions

#### 8th Class)

Answer:A

Solution:In SO<sub>2</sub>, sulphur forms 4 bonds (2 double bonds or resonance structures). In SO<sub>3</sub>, sulphur forms 6 bonds (3 double bonds or resonance structures). Valency of carbon in  $CH_4, C_2H_6, C_2H_4, C_2H_2$  is 8. B) 4,3,4,2 C) 4,6,4,2 D) 4,4,4,4 A) 1,2,3,4 Answer:D Solution:CH (Methane) Carbon forms 4 single bonds with hydrogen. Valency = 4 (since it shares 4 electrons).  $C_2H_6$ (Ethane) Each carbon forms: 3 bonds with hydrogen (1 single bond to the other carbon + 3 single bonds to hydrogen). Valency = 4 (for each carbon).  $C_{a}H_{4}$ (Ethylene/Ethene) Each carbon forms: 2 single bonds with hydrogen + 1 double bond with the other carbon. Total bonds = 4 (but valency is determined by the number of shared electrons, so 4).  $C_2H_2$  (Ethyne) Each carbon forms:1 single bond with H 1 triple bond with the other C (triple bond = 3) total = 4 bondsValency of Carbon = 4If an atom has 17 electrons, how many electron shells does it have? 9. a. 1 b. 2 c. 3 d. 4 Answer:C Solution: Electronic configuration: 2, 8, 7 (3 shells). 10. What is the maximum number of electrons that can occupy the outermost energy level of an atom? a. 2 b. 4 c. 6 d. 8 Answer:D Solution: The octet rule states that the outermost shell can hold a maximum of 8 electrons. 11. In which energy level do you find the valence electrons of an atom? a. First energy level b. Second energy level c. Third energy level d. Outermost energy level Answer:D Solution: Valence electrons are always in the outermost shell. 12. The electronic configuration of an element X is 2, 8, 7. A)  $O_2$ B)  $H_2$ C) C1 D) Ne Answer:C Solution: Atomic number =  $17 \rightarrow$  Chlorine (Cl). 13. Which of the following electronic configuration represents a noble gas ? A) 2, 8, 2 C) 2, 8 D) 2, 8, 8, 2 B) 2, 8, 6

Topic- Valency & Electropositive Ions

#### Chemistry : Valency & Ions

## 8th Class)-

#### Answer:C

Solution:Noble gases have completely filled outer shells.

Neon (Ne) has configuration 2,8.

- 14. Name and atomic number of an element whose atom has the electronic configuration 2, 8, 4.
  - A) Aluminium 13
- B) Sulphur 14
- C) Silicon 14 D) Phosphorus-15

#### Answer:C

Solution:Total electrons =  $14 \rightarrow$  Silicon (Si).

# **ADVANCED LEVEL QUESTIONS**

#### MULTIPLE CORRECT ANSWER TYPE

- 1. Valency is a
  - A) Number of electrons gained
  - C) Number of electrons shared

B)Number of electrons lost

D) Valency electrons

#### Answer:A,B,C

Solution:Valency is determined by:

Electrons lost (for metals, e.g., Na loses 1 electron  $\rightarrow$  valency = +1).

- Electrons gained (for non-metals, e.g., Cl gains 1 electron  $\rightarrow$  valency = -1).
- Electrons shared (in covalent bonds, e.g., Carbon shares 4 electrons  $\rightarrow$  valency = 4).
- (D) Valency electrons is incorrect because "valency electrons" refers to the outermost electrons, not the valency itself.
- 2. Elements with a valency of 2 when combining with hydrogen include:
  - a. Oxygen b. Calcium c. Sulfur d. Magnesium

#### Answer:A,B,C,D Educational Opera

Solution:Oxygen (O): Forms  $H_2O$  (valency = 2, gains 2 electrons).

Calcium (Ca): Forms  $CaH_2$  (valency = 2, loses 2 electrons).

Magnesium (Mg): Forms  $MgH_2$  (valency = 2, loses 2 electrons).

(c) Sulfur (S) is typically forms  $H_2S$  (valency = 2) but can also show variable valency (2, 4, 6).

#### **REASON AND ASSERTION TYPE**

3. Assertion: Chlorine exhibits a valency of -1 when combining with hydrogen.

Reason: Chlorine has seven electrons in its outer shell and tends to gain one electron to achieve a stable octet, forming compounds with a valency of 1 when combining with hydrogen.

#### Answer:A

Solution:Assertion (True):

Chlorine forms HCl (hydrochloric acid), where its valency is -1 (it gains 1 electron from hydrogen).

Reason (True and Correct Explanation):

#### 8th Class

Chlorine has 7 valence electrons and needs 1 more to complete its octet (stable configuration).

Thus, it gains 1 electron, showing a valency of -1.

4. Assertion: Nitrogen can exhibit different valencies, including 3, when combining with hydrogen.

Reason: Nitrogen has five electrons in its outer shell and can gain three electrons when combining with hydrogen, resulting in a valency of 3.

#### Answer:C

Solution: Assertion (True): Nitrogen shows variable valency (e.g., 3 in NH<sub>3</sub>, 5 in HNO<sub>3</sub>).

Reason (Incorrect):Nitrogen does not gain electrons when forming  $NH_3$  (ammonia). Instead, it shares 3 electrons via covalent bonding (not gaining).

# COMPREHENSION TYPE

#### **COMPREHENSION-1**

A neutral atom of an element has a nucleus with nuclear charge 11 times and mass 23 times that of hydrogen.

- 5. The element can form a stable charged ion by
  - (A) losing 1 electron B) losing 2 electrons
  - (C) gaining 1 electron D) gaining 2 electrons

#### Answer:A

Solution:Nuclear charge = +11 (11 protons  $\rightarrow$  atomic number Z = 11).

Mass number = 23 (protons + neutrons =  $23 \rightarrow A = 23$ ).

The element is sodium (Na), with electronic configuration:

2, 8, 1 (1 valence electron in the outermost shell).

Sodium has 1 valence electron in its outermost shell.

To achieve a stable octet (like noble gas Neon), it can lose 1 electron, forming Na<sup>+</sup>.

This ion has a +1 charge and a stable electron configuration (2, 8).

#### **COMPREHENSION-II**

Electron configurations describe the distribution of electrons in an atom's electron shells. The electron configuration 2,8,8,2 corresponds to three occupied electron shells. The first shell can hold a maximum of 2 electrons, the second shell can hold up to 8 electrons, and the third shell can also hold up to 8 electrons, and he fourth shell can also hold 2 electrons

- 6 Which of the following elements is likely to have the electron configuration 2,8,8?
  - a. Magnesium (Mg) b. Sulfur (S) c. Argon (Ar) d. Potassium (K)

#### Answer:C

Solution: Electron Configuration 2,8,8:

Topic- Valency & Electropositive Ions

Total electrons = 2 + 8 + 8 = 18.

This matches the atomic number of Argon (Z = 18), a noble gas with a stable octet in its outermost shell.

7. Which of the following elements is likely to have the electron configuration 2,8,4?

a. Magnesium (Mg) b. Sulfur (S) c. Argon (Ar) d. Silicon (Si)

## Answer:D

Solution: Electron Configuration 2,8,4:

Total electrons = 2 + 8 + 4 = 14.

This matches the atomic number of Silicon (Z = 14), a Group 14 element with 4 valence electrons.

#### INTEGER TYPE

8. \_\_\_\_\_ group elements exhibits the maximum valency with respect to chlorine

#### Answer:6

Solution:Group 1 (Alkali metals): +1 (e.g., NaCl).

Group 2 (Alkaline earth metals): +2 (e.g., MgCl<sub>2</sub>).

Group 13 (Boron group): +3 (e.g.,  $AlCl_3$ ).

Group 14 (Carbon group): +4 (e.g.,  $CCl_4$ ).

PCl<sub>5</sub> (Phosphorus Pentachloride), where phosphorus exhibits +5 valency.

Group 16 (Oxygen group): +4/+6 (e.g.,  $SCl_4/SCl_6$ )

# MATRIX MATCHING TYPE

| A-R,B-S,C-Q,D | -P                                                  |                                              |
|---------------|-----------------------------------------------------|----------------------------------------------|
|               | Educational Opera                                   | atina System                                 |
| nn I          | Colu                                                | mn II                                        |
| ient          | Valence el                                          | ectrons                                      |
| Sodium        | (R)                                                 | 1                                            |
| Carbon        | (S)                                                 | 4                                            |
| Magnesium     | (Q)                                                 | 2                                            |
| Fluorine      | (P)                                                 | 7                                            |
|               |                                                     |                                              |
|               | <b>nn I</b><br><b>Sodium</b><br>Carbon<br>Magnesium | TentValence elSodium(R)Carbon(S)Magnesium(Q) |

# KEY

|         |         |       |    | TEACHING          | i TASK          |           |    |            |       |
|---------|---------|-------|----|-------------------|-----------------|-----------|----|------------|-------|
|         |         |       |    | JEE MAINS         | S LEVEL QU      | ESTIONS   |    |            |       |
| 1       | 2       | 3     | 4  | 5                 | 6               | 7         | 8  | 9          | 10    |
| D       | С       | В     | D  | С                 | D               | С         | В  | С          | А     |
| 11      |         |       |    |                   |                 |           |    |            |       |
| D       |         |       |    |                   |                 |           |    |            |       |
|         |         |       |    | JEE ADVA          | NCED LEVE       | L QUESTIO | NS |            |       |
| 1       | 2       | 3     | 4  | 5                 | 6               | 7         | 8  | 9          | 10    |
| A,B,C,D | A,B,C,D | A,C,D | Α  | A                 | A               | A         | A  | С          | В     |
| 11      | 12      | 13    | 14 | 15                | 16              | 17        | 18 | 19         | 20    |
| В       | C       |       |    |                   | В               | В         | 5  | 1,2,3      | Α     |
|         |         |       |    | LEARNERS<br>CUQ'S | TASK<br>peratin |           | em |            |       |
| 1       | 2       | 3     | 4  | 5                 | 6               | 7         | 8  | 9          | 10    |
| Α       | C       | В     | В  | С                 | D               | В         | В  | С          | D     |
|         |         |       |    | JEE MAIN          | LEVEL QUE       | STIONS    |    |            |       |
| 1       | 2       | 3     | 4  | 5                 | 6               | 7         | 8  | 9          | 10    |
| С       | Α       | В     | В  | С                 | Α               | Α         | D  | С          | D     |
| 11      | 12      | 13    | 14 |                   |                 |           |    |            |       |
| D       | C       | С     | С  |                   |                 |           |    |            |       |
|         |         |       |    | ADVANCE           | D LEVEL QI      | JESTIONS  |    |            |       |
| 1       | 2       | 3     | 4  | 5                 | 6               | 7         | 8  | 9          |       |
| A,B,C,D | A,B,C,D | Α     | С  | Α                 | С               | D         | 6  | A-R,B-S,C- | Q,D-P |

