2. Oxidation and Reduction

SOLUTIONS

TEACHING TASK

JEE MAIN LEVEL QUESTIONS

- 1. Oxidation state of nitrogen is not an integer in
 - A) Hydroxyl amine (NH_2OH)
- B) Ammonia (NH_3)

C) Hydrazine (N_0H_{\perp})

D) Hydrazoic acid (N_3H)

Answer:D

Solution:A) NH_2OH : N = -1

- B) NH_2 : N = -3
- C) $N_2 H_4$: N = -2
- D) HN_3 : N = -1/3 (average, not integer)
- 2. The oxidation state of phosphorus is maximum in
 - A) Phospine (PH_3)

- B) Diphosphine (P_2H_4)
- C) Metaphosphoric acid (HPO₂)

D) Phosphorus acid (H_3PO_3)

Answer:C

Solution:A) PH_3 : P = -3

- B) $P_{2}H_{4}$: $P = -2^{\circ}$
- C) \tilde{HPO}_{3} : P = +5
- D) H_3PO_3 : P = +3
- 3. The oxidation state of oxygen is maximum in
 - A) Bleaching powder (CaOCl₂)
- B) Oxygen difluoride (OF_2)
- C) Dioxygen difluoride $(O_2F_2)^2$

D) Hydrogen peroxide (H_2O_2)

Answer:B

Solution:A) $CaOCl_2$: O = -2

- B) OF_2 : O = +2
- C) O_2F_2 : O = +1
- D) $H_{2}^{2}O_{2}^{2}$: O = -1
- 4. The oxidation number of chlorine is maximum in
- A) HOCl
- B) Cl_2O_6

C) KClO₄

D) NaClO₃

Answer:C

Solution:A) HOCl: Cl = +1

- B) Cl_2O_6 : Cl = +6
- C) $KC1O_{4}$: C1 = +7
- D) NaCl \vec{O}_3 : Cl = +5
- 5. One of the following element always exhibits only -1 oxidation state in all of its compounds with other elements. The element is
 - A) Hydrogen
- B) Sodium
- C) Fluorine
- D) Oxygen

Answer:C

Solution:Fluorine is always -1 in compounds

6. In one of the following compounds, the oxidation number of sulphur is not a

9th Class

whole number

Chemistry: Oxidation&Reduction

A) $Na_2S_4O_6$

B) H_2SO_5

C) H_2SO_4

D) $Na_{2}S_{2}O_{3}$

Answer:A

Solution:A) $Na_2S_4O_6$

2(1)+4S+6(-2)=0

4S=10---->S=2.5

Others have integer values

- 7. Which of the following statements is wrong
 - A) Oxidation number of oxygen is +1 in peroxides
 - B) Oxidation number of oxygen is +2 in oxygen difluoride
 - C) Oxidation number of oxygen is -1/2 is super oxides
 - D) Oxidation number of oxygen is -2 in most of its compounds

Answer:A

Solution:O is -1 in peroxides (not +1)

- 8. In the conversion of $CrO_4^{-2} \rightarrow Cr_2O_7^{2-}$, the oxidation number of chromium
 - A) increases

B) decreases

C) becomes zero

D) remains unchanged

Answer:D

Solution:CrO₄-2

Cr+4(-2)=-2

 $Cr=-2+8 \rightarrow Cr=6$

 $Cr_{2}O_{7}^{2-}$

2Cr + 7(-2) = -2

2Cr=12

Cr=6

- 9. Oxidation number of carbon is zero in the compound
 - A) methyl chloride

B) chloroform

C) glucose

D) carbon tetrachloride

Answer:C

Solution: A) Methyl chloride (CH₃Cl)

H = +1 (each), Cl = -1

Let C = x

Equation: $x + 3(+1) + (-1) = 0 \rightarrow x + 3 - 1 = 0 \rightarrow x = -2$

Oxidation state: -2

B) Chloroform (CHCl₂)

H = +1, Cl = -1 (each)

Equation: $x + 1 + 3(-1) = 0 \rightarrow x + 1 - 3 = 0 \rightarrow x = +2$

Oxidation state: +2

C) Glucose $(C_6H_{12}O_6)$

For organic compounds, we calculate average oxidation state:

H = +1 (each), O = -2 (each)

Total: $6x + 12(+1) + 6(-2) = 0 \rightarrow 6x + 12 - 12 = 0 \rightarrow 6x = 0 \rightarrow x = 0$

Average oxidation state: 0 (but individual carbons vary)

D) Carbon tetrachloride (CCl₄)

C1 = -1 (each)

Equation: $x + 4(-1) = 0 \rightarrow x - 4 = 0 \rightarrow x = +4$

Oxidation state: +4

10. If three electrons are lost by Mn⁺³, its final oxidation state would be

C)
$$+2$$

D)
$$+4$$

Answer:B

Solution:Initial: +3Final: +3 + 3 = +6

11. Oxidation number and Covalency of sulphur in S₈ molecule are respectively

Answer:C

Solution:In S_8 (elemental sulfur), each sulfur atom has an oxidation number of 0 since it's in its free state.

Covalency refers to the number of covalent bonds formed by an atom. In S_8 (a puckered ring structure), each sulfur forms 2 covalent bonds with neighboring sulfur atoms.

12. Sum of the oxidation numbers of carbon in acetaldehyde is

A)
$$-2$$

$$C) - 4$$

D)
$$-1$$

Answer:A

Solution: Acetaldehyde (CH₃CHO) has 2 carbon atoms:

 CH_3 group (C1):3 H atoms (+1 each)

Let C1 = x

Equation: $x + 3(+1) = 0 \rightarrow x = -3$

CHO group (C_2) :1 H atom (+1), 1 O atom (-2)

Let C2 = y

Equation: $y + 1 + (-2) = 0 ? \rightarrow y = +1$

Total oxidation numbers: -3 (C1) + +1 (C2) = -2

13. In bleaching powder oxidation states of Cl are

A)
$$-1$$
, $+2$

B)
$$-2$$
, $+1$

C)
$$-1$$
, $+1$

D)
$$-2,+1$$

Answer:C

Solution:Bleaching powder (CaOCl₂) contains two chlorine atoms with different oxidation states:

Cl⁻ (hypochlorite ion, ClO⁻): Cl = +1

 Cl^- (chloride ion, Cl^-): Cl = -1

Thus, the oxidation states are -1 and +1.

14. Oxidation numbers of sodium, mercury in sodium amalgam are

C)
$$-2$$
, $+2$

Answer:A

Solution: Sodium amalgam is an alloy of sodium (Na) and mercury (Hg).

In alloys, elements retain their elemental oxidation state (0) because no electron transfer occurs.

Thus, both Na and Hg have oxidation numbers of 0.

15. Which of the following is a redox reaction

A)
$$CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$$

B)
$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

C)
$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

D)
$$NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$$

Answer:C

Solution:

A) $CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$

Type of Reaction: Esterification (organic reaction forming an ester).

Oxidation States:

Carbon in CH ₃COOH: Remains +3 (carboxyl C) and -3 (methyl C).

Carbon in C_0H_5OH : Remains -2 (alcohol C).

No change in oxidation states occurs.

B) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Type of Reaction: Neutralization (acid-base reaction).

Oxidation States:

Na remains +1, O remains -2, H remains +1, S remains +6.

No change in oxidation states.

C) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$

Type of Reaction: Single displacement (metal replacement).

Oxidation States:

Zn: Changes from 0 (elemental) to +2 (in ZnSO $_{4}$) \rightarrow Oxidized.

Cu: Changes from +2 (in CuSO $_4$) to 0 (elemental) \rightarrow Reduced.

Conclusion: Redox reaction (Zn is oxidized, Cu is reduced).

D) $NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$

Type of Reaction: Double displacement (precipitation).

Oxidation States:

Na remains +1, Cl remains -1, Ag remains +1, N remains +5, O remains -2.

No change in oxidation states.

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

16. The oxidation number of Cr = +6 in

A) FeCr₂O₄

B) KCrO₃Cl

C) CrO₅

D) $[Cr(OH)_4]^-$

Answer:B,C

Solution: A) FeCr₂O₄

Oxidation states:Fe: Typically +2 or +3.

O: -2 (each).

Let Cr = x.

Equation for Fe²⁺: $+2 + 2x + 4(-2) = 0 \rightarrow 2 + 2x - 8 = 0 \rightarrow 2x = 6 \rightarrow x = +3$.

B) KCrO₃Cl

Oxidation states:

K: +1, Cl: -1, O: -2 (each).

Let Cr = x.

Equation: $+1 + x + 3(-2) + (-1) = 0 \rightarrow 1 + x - 6 - 1 = 0 \rightarrow x = +6$.

C) CrO₅

K: +1, Cl: -1, O: -2 (each).

Let Cr = x.

Equation: $+1 + x + 5(-2) + (-1) = 0 \rightarrow 1 + x - 10 - 1 = 0 \rightarrow x = +10$.

Actually CrO₅ has 4 peroxo O (-1 each) and 1 O (-2): total O = 4(-1) + 1(-2) = -6 \rightarrow x $-6 = 0 \rightarrow x = +6$

D) [Cr(OH),]-

Oxidation states:

OH: -1 (each).

Let Cr = x.

Equation: $x + 4(-1) = -1 \rightarrow x - 4 = -1 \rightarrow x = +3$.

The reaction $Cu_2O \rightarrow CuO + Cu$ is an example of

B) Reduction C) redox reaction A) Oxidation

Answer:C,D

Solution: Assign Oxidation States:

In Cu_2O : Each Cu: +1 (since O is -2, and total charge is 0: 2(+1) + (-2) = 0).

In Cu (metal): 0 (elemental form).

In CuO: Cu: +2, O: -2.

Identify Changes in Oxidation States:

Cu in Cu₂O (+1) changes to:

Cu (0): Reduction (gain of electrons, oxidation state decreases from +1 to 0).

CuO (+2): Oxidation (loss of electrons, oxidation state increases from +1 to +2).

Thus it's redox (C) and also disproportionation (a type of redox).

It's also decomposition (D) of a compound into two different substances.

18. In which of the following process nitrogen is reduced?

A)
$$NH_4^+ \longrightarrow N_2$$
 B) $NO_3^- \longrightarrow NO$ C) $NO_2 \longrightarrow NO_2^-$ D) $NO_3^- \longrightarrow NH_4^+$

C)
$$NO_2 \longrightarrow N$$

D)
$$NO_3^- \longrightarrow NH_4^+$$

D) Decomposition

Answer: B, C, D

Solution:A) $NH_{\Delta}^{+} \longrightarrow N_{2}$

$$NH_4^+ \rightarrow -3$$

 N_0 : N = 0 (elemental form).

Change: $-3 \rightarrow 0$ (oxidation, not reduction)

B) $NO_3^- \longrightarrow NO$

 NO_3^- : N = +5 (O is -2, total charge = -1: x + 3(-2) = -1 \rightarrow x = +5).

NO: N = +2 (O is -2: $x + (-2) = 0 \rightarrow x = +2$).

Change: $+5 \rightarrow +2$ (Decrease by 3).

Conclusion: Reduction (correct).

C) $NO_2 \longrightarrow NO_2^-$

Oxidation state of N in NO₂: +4

Oxidation state of N in NO₂:+3

Change: $+4 \rightarrow +3$ (Decrease by 1).

Conclusion: Reduction (correct).

D) $NO_3^- \longrightarrow NH_4^+$

Oxidation state of N in $NO_3^- = +5$

Oxidation state of N in NH₄⁺: -3

Change: $+5 \rightarrow -3$ (reduction, as the oxidation state decreases)

Statement Type/Assertion and Reason Type:

19. : Fluorine always exhibit an oxidation state of -1 in its Assertion (A)

compounds

Reason (R) : Fluorine has maximum electronegativity and it contain

seven electron in its valence shell

Answer:A

Solution: Assertion (A) is true because fluorine, being the most electronegative element, always gains one electron to achieve a stable octet, resulting in an oxidation state of -1 in all its compounds.

Reason (R) is also true because fluorine's high electronegativity (highest among all elements) and its need for one more electron to complete its valence shell (7 valence electrons) explain why it always attains a -1 oxidation state.

: Oxidation number of Cl atom is zero in Cl₂ 20. Statement I

: Oxidation number of homoatomic molecule is taken as Statement II

Zero

Answer:A

Solution: Statement I is true because in Cl₂ (a diatomic molecule of the same element), the shared electrons are equally distributed, resulting in an oxidation state of 0 for each Cl atom.

Statement II is also true because, by definition, the oxidation number of any element in its pure form (including homoatomic molecules like Cl₂, O₂, N₂, etc.) is always zero.

Comprehension Type

Oxidation number (or oxidation state) is a concept in chemistry used to repre sent the apparent charge of an atom in a compound. It's a hypothetical charge as signed to an atom based on a set of rules and assumptions, and it is a use ful tool for balancing redox reactions.

Oxidation and reduction are two fundamental processes in chemistry that often occur together in what is known as a redox (reduction-oxidation) reaction. These processes involve the transfer of electrons between chemical species.

21. Which of the following process nitrogen is oxidised

A)
$$NH_4^+ \rightarrow N_2$$
 B) $NO_3^- \rightarrow NO$ C) $NO_2 \rightarrow NO_2^-$ D) $NO_3^- \rightarrow NH_4^+$

B)
$$NO_3^- \rightarrow NO_3$$

C)
$$NO_2 \rightarrow NO_2$$

D)
$$NO_3^- \rightarrow NH_4^+$$

Answer:A

Solution: Solution: A) $NH_a^+ \longrightarrow N_2$

$$NH_4^+ \rightarrow -3$$

 N_2 : N = 0 (elemental form).

Change: $-3 \rightarrow 0$ (oxidation, not reduction)

B)
$$NO_3^- \longrightarrow NO$$

 NO_3^- : N = +5 (O is -2, total charge = -1: x + 3(-2) = -1 \rightarrow x = +5).

(9th Class)

Chemistry: Oxidation&Reduction

NO: N = +2 (O is -2: x + (-2) = 0

Change: $+5 \rightarrow +2$ (Decrease by 3).

Conclusion: Reduction (correct).

C) $NO_2 \longrightarrow NO_2^-$

Oxidation state of N in NO₂: +4

Oxidation state of N in NO_2^{-1} :+3

Change: $+4 \rightarrow +3$ (Decrease by 1).

Conclusion: Reduction (correct).

D) $NO_3^- \longrightarrow NH_4^+$

Oxidation state of N in NO₃ = +5

Oxidation state of N in NH_{4}^{+} : -3

Change: $+5 \rightarrow -3$ (reduction, as the oxidation state decreases)

- 22. In the reaction $2BaO_1 \rightarrow 2BaO + O_2$, the oxidation number of Barium
 - A) Decreases from +4 to +2

B) Decreases from +2 to 0

C) Increases from -4 to -2

D) Does not change

Answer:D

Solution: $2BaO_2 \rightarrow 2BaO + O_2$

In BaO_2 (barium peroxide), oxygen is in the -1 oxidation state (peroxide ion, O_2^{2-}) Since there are two oxygens each at -1, the total negative charge is -2, so barium must be +2.

In BaO, oxygen is in the usual -2 oxidation state (oxide ion), so barium is still +2. **Integer Type:**

23. The number of electrons involved in the half-reaction $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$ is _____

Answer:6

Solution:Balance the half-reaction for $Cr_2O_7^{2-}$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

Chromium goes from +6(in $Cr_2O_7^{2-}$) to +3 (in Cr_3^{3+})

Total electrons transferred: 6 (to balance the charge).

For 2Cr ³⁺:No change in oxidation state, so 0 electrons are involved.

Conclusion:

The half-reaction involves 6 electrons.

24. The oxidation state of phosphorus in Ba(H₂PO_B)₂ is _____

Answer:1

Solution: The compound Ba(H₂PO₂)₂

1 Ba atom: +2

 $4 \text{ H atoms: } 4 \times (+1) = +4$

4 O atoms: $4 \times (-2) = -8$

2 P atoms: 2x

Total charge on the compound is 0 (neutral): 2+4-8+2x=0

 $2x-2=0 \to x=+1$

Matrix Matching Type:

25.

List - I

(Compound)

A) $H_2S_2O_8$

B) H,S

C) Na₂SO₃

D) $S_2C\ell_2$

List - II

(Oxidation no of sulphur)

3) + 6

5) -2

4) + 4

1) + 1

Answer: A-3, B-5, C-4, D-1

Solution:

A) $H_2S_2O_8$

2(H)+2(S)+8(O)=0

Substitute known values:

2(+1)+2x+[2(-1)+6(-2)]=0

Simplify: 2+2x+(-2-12)=0

2+2x-14=0

x=+6

B) H,S

2(1)+S=0

S=-2

C) Na₂SO₃

2(1)+S+3(-2)=0

S = +4

D) $S_2C\ell_2$

2S+2(-1)=0

2S=2

S=+1

Ed@S

LEARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS

1. The oxidation state of sulphur in $Na_2S_4O_6$ is

A) 3/2

B) 2/3

°C) 5/2

D) 2/5

Answer:C

Solution: Na₂S₄O₆

2(1)+4S+6(-2)=0

4S-10=0

4S = 10

S=10/4=5/2

2. Phosphorous exhibits highest oxidation state in

B)
$$H_3PO_3$$

C)
$$Ca_3(POD)2$$

D)
$$H_3PO_2$$

Answer:C

Solution: A) PH_3 : -3

B) H₃PO₃: +3

C) $Ca_3(PO_4)_2$: +5 (highest)

D) H_3PO_2 : +1.

3. Oxidation state of 'S' in S_8 molecule is

A) 0

B)
$$+2$$

C) +4

D) +6

Answer:A

Solution: In elemental form (S_8), the oxidation state is 0.

4. Oxidation state of N in N3H is

A)
$$+1/3$$

B)
$$+3$$

C)
$$-1/3$$

D) -1

Answer:C

Solution:Let the oxidation state of N be

3x+1=0

3x = -1

x=-1/3

5. Oxidation number of C in CH₂O is

A)
$$-2$$

B)
$$+2$$

D) 4

Answer:C

Solution: x+2(+1)+(-2)=0

x=0.

6. Oxidation state of Fe in K4[Fe(CN)6]

C)
$$+2$$

D) +5

Answer:C

Solution: $K_4[Fe(CN)_6]$

CN has -1 charge.

4(+1)+x+6(-1)=0

x=+2.

7. Oxidation number and valency of oxygen in OF₂ are

A)
$$+1,2$$

B)
$$+2$$
, 2

C)
$$+1^{2}$$
, 1

D) +2, 1

Answer:B

Solution: OF₂ oxidation number

x+2(-1)=0

x = +2

Valency = 2 (forms 2 bonds).

8. In which of the following the oxidation state of chlorine is +5?

A) HClO₄

B) HClO₃

C) HClO₂

D) HC1

Answer:B

Solution:A) HClO₄: +7

B) HClO₃: +5 (correct)

C) $HC1O_2$: +3

D) HCl: -1.

9. All elements commonly exhibit an oxidation state of A) +1B) -1C) zero D) +2Answer:C Solution: All elements in their free state (e.g., O₂, Na, S₈) have 0 oxidation state. The maximum oxidation state that fluorine exhibits is A) -1B) zero D) +2C) + 1Answer:A Solution: Fluorine is the most electronegative element and only exhibits -1 JEE MAIN LEVEL QUESTIONS 11. The minimum oxidation state that nitrogen exhibits is C) -4D) -5A) -2B) -3Answer:B Solution: Nitrogen's lowest oxidation state is -3 (e.g., in NH₃ or metal nitrides like Li_3N). What is the oxidation state of carbon in carbondioxide? 12. A) +2B) +4 C) +6D) +1Answer:B Solution:Oxygen is -2 each. $x+2(-2)=0 \rightarrow x=+4$. 13. In which of the following compounds oxygen exhibits an oxidations state of +2? C) OF₂ B) H_2O_2 D) H_2SO_4 A) H_2O Answer:C Solution:A) $H_2O: -2$ B) H_2O_2 : -1 (peroxide) C) OF₂: +2 (fluorine is -1, so oxygen is +2) D) H_2SO_4 : -2. The oxidation number of sulphur in S_8 , S_2F_2 and H_2S are A) 0, +1 and -2 B) +2, +1 and -2 C) 0, +1 and +2 D) -2, +1 and -2 Answer:A Solution:S₈ (elemental sulfur): 0 S_2F_2 : Fluorine is -1, so sulfur is +1. H_2S : Hydrogen is +1, so sulfur is -2. Chlorine is passed into dilute, cold KOH solution. What are the oxidation numbers of chlorine in the products formed? A) -1, +5C) +1, +7B) -1, +3D) +1, -1Answer:D Solution: The reaction produces KClO (hypochlorite, Cl = +1) and KCl (chloride, Cl = -1). The element that always exhibits a negative oxidation state in its compounds is 16. A) Nitrogen B) Oxygen C) Fluorine D) Chlorine Answer:C

Solution: Fluorine is the most electronegative element and always has -1 in

compounds.

- In the conversion of K₂Cr₂O₇ to K₂CrO₄ the oxidation number of the following 17. changes
 - A) K
- B) Cr

- C) Oxygen
- D) None

Answer:D

Solution:In $K_2Cr_2O_7$, Cr is +6.

In K2CrO4, Cr is still +6.

No change occurs (trick question!). Correct answer is D) None.

- The oxidation number of 'N' in HN_3 is
 - A) +1/3
- B) 0

- C) -1/3
- D) 1

Answer:C

Solution:Let oxidation state of N be x.

$$1+3x=0 \rightarrow x=-1/3$$

- Oxidation number of sulphur in oleum $(H_2S_2O_7)$ is A) +4 B) +2 C) -2 19.

- D) +6

Answer:D

Solution: Structure: HO-SO2-O-SO2-OH (each S bonded to 4 O atoms).

Calculation: $2(+1)+2x+7(-2)=0 \rightarrow x=+6$.

- The element which has only one oxidation state in its compounds is 20.
 - A) Hydrogen
- B) Oxygen
- C) Nitrogen
- D) Fluorine

Answer:D

Solution:Fluorine is always -1 (no exceptions).

JEE ADVANCED LEVEL QUESTIONS

Multicorrect Answer Type

- $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$ the correct statement for the reaction 21. is
 - A) Cu is oxidized

B) HNO₃ is reduced

C) Cu is reduced

D) Cu acts as reducting agent

Answer:A,B,D

Solution:A) Cu is oxidized \rightarrow Correct (Oxidation state changes from 0 to +2).

- B) HNO 3 is reduced → Correct (Nitrogen's oxidation state changes from +5 (in HNO3) to +2 (in NO)).
- D) Cu acts as a reducing agent \rightarrow Correct (Since Cu is oxidized, it donates electrons, making it a reducing agent).
- Which of the following have been arranged in order of decreasing oxidation 22. number of Sulphur?
 - A) $H_2S_2O_7 > Na_2S_4O_6 > Na_2S_2O_3 > S_8$
- B) $SO_4^{2+} > SO_4^{2-} > SO_3^{2-} > HSO_4^{-}$

C) $H_2SO_5 > H_2SO_3 > SCl_2 > H_2S$

D) $H_2SO_4 > SO_2 > H_2S > H_2S_2O_8$

Answer:A,C

Solution:Oxidation Numbers of S in Given Compounds:

A) $H_2S_2O_7$ (Disulfuric acid):2(+1)+2x+7(-2)=0 \rightarrow x=+6

 $Na_{2}S_{4}O_{6}:2(1)+4S+6(-2)=0 \rightarrow 4S=10 \rightarrow S=10/4 \rightarrow S=2.5$

 $Na_{2}S_{2}O_{3}:2(1)+2S+3(-2)=0 \rightarrow 2S=4 \rightarrow S=2$

 $S_8 : S = 0$

Order: $+6>2.5>2>0 \rightarrow$ Correct decreasing order.

B)SO²⁺

$$S+(-2)=2 \rightarrow S=4$$

$$SO_4^{2}: x+4(-2)=-2 \rightarrow x=+6$$

$$SO_3^{^42}: x+3(-2)=-2 \rightarrow x=+4$$

$$HSO_4: +1+x+4(-2)=-1 \rightarrow x=+6$$

Order: $+4,+6,+4,+6 \rightarrow$ Not in decreasing order.

C)
$$H_0SO_{\epsilon}$$
: 2(1)+x+5(-2)=0 \rightarrow x=+8

$$H_{2}SO_{3}: 2(+1)+x+3(-2)=0 \rightarrow x=+4$$

$$S\tilde{C}1_{2}: x+2(-1)=0 \rightarrow x=+2$$

$$H_{2}S^{2}: 2(+1)+x=0 \rightarrow x=-2$$

Order: $+8>+4>+2>-2 \rightarrow$ Correct decreasing order.

D)H
$$_{2}$$
SO $_{4}$: x=+6

SO
$$_{2}$$
: x+2(-2)=0 \rightarrow x=+4

$$H_{2}\bar{S}: x=-2$$

$$H_2S_2O_8: 2(1)+2x+8(-2)=0 \rightarrow 2x=14 \rightarrow x=+7$$

Order: $+6,+4,-2,+7 \rightarrow \text{Not in decreasing order.}$

Statement Type/Assertion and Reason Type:

23. Assertion (A) :
$$Zn_{(s)} + CuSO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + Cu_{(s)}$$
 is an redox reaction.

Answer:A

$$Solution: Zn_{(s)} + CuSO_{4(aq)} \longrightarrow ZnSO_{4(aq)} + Cu_{(s)}$$

Oxidation: Zn (Zinc) loses electrons
$$\rightarrow$$
 Zn \rightarrow Zn $^{2+}$ +2e

Since both oxidation and reduction occur simultaneously, this is indeed a redox reaction.

Comprehension Type:

Removal of electron(s) from atom (or) an ion is called oxidation (or) increase in the oxidation number is called oxidation. Addition of electron(s) to an atom or an ion is called reduction (or) decrease in the oxidation number is called reduction.

Example:
$$\overset{0}{\operatorname{Zn+}}\overset{+2}{\operatorname{Cu}}\operatorname{SO}_4 \to \overset{+2}{\operatorname{Zn}}\operatorname{SO}_4 + \overset{0}{\operatorname{Cu}}$$

24. The atom under going oxidation is:

Answer:A

$$Solution: \overset{\scriptscriptstyle{0}}{Z}\!\overset{\scriptscriptstyle{+2}}{n} + \overset{\scriptscriptstyle{+2}}{C}\!\overset{\scriptscriptstyle{0}}{u} SO_{_{4}} \to \overset{\scriptscriptstyle{+2}}{Z}\!\overset{\scriptscriptstyle{0}}{n} SO_{_{4}} + \overset{\scriptscriptstyle{0}}{C}\!\overset{\scriptscriptstyle{0}}{u}$$

Oxidation: Zn (Zinc) loses electrons
$$\rightarrow$$
 Zn \rightarrow Zn $^{2+}$ +2e

Answer:B

Solution:Reduction:Cu²+(from CuSO₄) gains electrons:Cu²++2e → Cu

Integer Type

26. The oxidation number of carbon in diamond is _____

Answer:0

Solution:Diamond is a pure, elemental form of carbon (C).

In all elemental forms (including diamond, graphite, and C $_{60}$), the oxidation number of an uncombined atom is 0.

27. What is the oxidation number of chlorine in ClO_3^- is _____

Answer:5

Solution: ClO₃

Matrix Matching Type

28.Answer:a-2, b-1, c-4, d-3

Solution:

Column - I

a)
$$Cr \rightarrow CrCl_2$$

2) Cr is oxidised

b)
$$M^{-2} \to X + 5e^{-}$$

1)
$$X = M^3$$

c)
$$F_2 + 2e^- \rightarrow 2F^-$$

4) F is reduced

'3) Good oxidising agent

29.Answer:a-3,5,b-4,c-2,d-1

Solution:

Column - I

Column - II

3)
$$Zn \longrightarrow Zn^{+2} + 2e^{-},5) Mg \rightarrow Mg^{+2} + 2^{e-}$$

4)
$$C\ell + e^- \longrightarrow C\ell^-$$

d) Reductant

1) Ca

KEY

			TEACHING TASK							
1	2	3	4	5	6	7	8	9	10	
D	С	В	С	С	Α	Α	D	С	В	
11	12	13	14	15	16	17	18	19	20	
С	Α	С	Α	С	В,С	C,D	B,C,D	Α	Α	
21	22	23	24		25					
Α	D	6	1 A-3,B-5,C-4,D-1							
			LEARNERS TASK							
		Co	Conceptual Understanding Questions							
1	2	3	4	5	6	7	8	9	10	
С	С	Α	С	С	С	В	В	С	Α	
			JEE MAIN LEVEL QUESTIONS							
11	12	13	14	15	16	17	18	19	20	
В	В	С	Α	D	С	D	С	D	D	
		JEE ADVANCED LEVEL QUESTIONS								
21	22	23	24	25	26	27		28		
A,B,D	A,C	Α	A A B 0				a-2, b-1, c-4, d-3			
	29									
a-3,5,b-4,c-2,d-1										

Ed@S

Ed@S