Chemistry : Stoichiometry

	STOICHIOMETRY								
	MOLE CONCEPT								
	SOLUTIONS								
		TEACHI	NG TASK						
		JEE MAIN LEV	EL QUESTION	S					
1.	Which of the follo	owing is a hexa-aton	nic molecule						
	1) Phosphorus	2) Sulphur	3) Ethane	4) Methane					
An	swer:None								
Su Etł	lphur (S): Exists a nane (C ₂ H ₆): Has a	s (P): Exists as tetra- is octa-atomic molec i total of eight atoms a total of five atoms (ules (S ₈). (two carbon and s	ix hydrogen).					
2.	The no. of electro	ons present in one n	nole of Azide ion an	re $\left(N_{3}^{-}\right)$					
	1) 21N	2) 20N	3) 22N	4) 43N					
An	swer:3								
So	lution:N ₃ - ion:								
Ea	ch N atom has 7 e	electrons → 3N ato <mark>m</mark>	s = 21 electrons.						
Ex	tra 1 electron due	to -1 charge \rightarrow Tota	l = 22 electrons pe	r ion.					
Fo	r 1 mole (N ions), t	total electrons = 22 >	< N = 22N.						
3.	The number of n	eutrons in one mole	of hydrogen is						
	1) N	2) 0.5N	3) 0	4) 2N					
An	swer:3								
		H) has no neutrons							
1 r		N atoms \times 0 neutron							
4. dic	The total numbe chromate is	er of atoms of all el	ements present in	1 mole of ammonium					
	1) 14	2) 19	3) 6×10 ²⁹	4) 114×10 ²³					

Answer:2

Solution:Formula unit: $(NH_4)_2Cr_2O_7 \rightarrow 2N + 8H + 2Cr + 7O = 19$ atoms. 1 mole contains 19 × N atoms.

5. How many moles of Barium carbonate will contain 1.5 moles of oxygen atoms1) 1 mole2) 0.5 mole3) 0.25 mole4) 0.4 mole

Answer:2

Solution:BaCO $_3$ has 3 oxygen atoms per mole.

Chemistry : Stoichiometry

7th Class

To get 1.5 moles of O, divide by 3: Moles of $BaCO_3 = \frac{1.5}{2} = 0.5$ mole

Total number of species present in 1 mole of potash alum in terms of avagadro 6. number, 'N' are

1) 3N 2) 5N 3) 8N 4) 32N

Answer:4

Solution: The chemical formula of potash alum is $K_2SO_4.Al_2(SO_4)_3.24H_2O_4$

Avogadro's number is represented by N.

Count the total number of species

Total K^+ ions:2

Total_{Al³⁺}ions:2

Total SO_4^{2-} ions:3

Total H₂Omolecules: 24

Total species:2+2+3+24=32

Total species in 1 mole: 32N

- 7. Which of the following contain 9 X 10²³ oxygen atoms ?
 - 1) 0.25 moles of glucose
 - 3) 1.0 mole of dimethyl ether
- 2) 0.5 moles of ethyl alcohol

2) $5 \times 6.62 \times 10^{23}$ atoms/mole

- 4) 0.01 moles of sucrose

Answer:1

Solution: 0.25 moles glucose $(C_6H_{12}O_6) \rightarrow 1.5N$ O atoms

0.5 moles ethanol (C_2H_5OH) \rightarrow 0.5N O atoms \bigcirc System

1.0 mole dimethyl ether (CH₃OCH₃) \rightarrow 1N O atoms

0.01 moles sucrose $(C_{12}H_{22}O_{11}) \rightarrow 0.11NO$ atoms

1) 0.25 moles glucose gives 9.03×10^{23} O atoms).

```
How many atoms are contained in one mole of sucrose (C_{12}H_{22}O_{11})?
8.
```

- 1) $45 \times 6.02 \times 10^{23}$ atoms/mole
- 3) $5 \times 6.02 \times 10^{23}$ atoms/mole 4) None of these

Answer:1

Solution: Understand the Formula of Sucrose $(C_{12}H_{22}O_{11})$:

Carbon (C): 12 atoms

Hydrogen (H): 22 atoms

Oxygen (O): 11 atoms

Total atoms per molecule:12(C)+22(H)+11(O)=45atoms.

1 mole of any substance contains Avogadro's number (N) of molecules, where N=6.022×10²³

For sucrose:Total atoms=45atoms/molecule×6.022×10²³molecules/mole.

Total atoms=45×6.022×10²³atoms/mole.

(Topic- Mole Concept)

Chemistry : Stoichiometry

9. A sample of phosphorus trichloride (PCl₃) contains 1.4 moles of the substance. How many atoms are there in the sample?

1) 4 2) 5.6 3) 8.431×10^{23} 4) 3.372×10^{24}

Answer:4

Solution: Understand the Molecular Structure of PCl₃:

Phosphorus trichloride (PCl_3) consists of: 1 phosphorus (P) atom, 3 chlorine (Cl) atoms Total atoms per molecule of PCl_3 : 1(P)+3(Cl)=4 atoms.

Calculate Total Atoms in 1.4 Moles of PCl3:

1 mole of PCl_3 contains Avogadro's number (N) of molecules, where N=6.022×10²³ Atoms per mole of PCl3:

4atoms/molecule×6.022×10²³molecules/mole=2.4088×10²⁴ atoms/mole.

For 1.4 moles:1.4moles×2.4088×10²⁴ atoms/mole=3.372×10²⁴ atoms.

- 10. The number of electrons in a mole of hydrogen molecule is
 - 1) 6.02×10^{23} 2) 12.046×10^{23} 3) 3.0115×10^{23} 4) Indefinite

Answer:2

Solution:Understand the Hydrogen Molecule (H₂):

Each hydrogen atom (H) has 1 electron.

A hydrogen molecule (H_2) consists of 2 hydrogen atoms, so it has:2 electrons per H_2 molecule.

Calculate Electrons in 1 Mole of H2:

1 mole of any substance contains Avogadro's number (N) of molecules, where N=6.022×10 23

For H_2 :Total electrons=2electrons/molecule×6.022×10²³molecules/mole.

Total electrons=12.044×10²³

11. How many years it would take to spend Avogadro's number of rupees at the rate of 10 lac rupees per second?

1) 1.9090 × 10^{15} year	2) 1.9099 × 10 ¹⁰ year
3) 1.9800 × 10 ⁵ year	4) 1.978 × 10 ²⁰ year

Answer:2

Solution:Given Data:

Avogadro's number (N)=6.022×10²³ rupees.

Spending rate = 10 ⁶rupees/second.

Time (seconds) = $\frac{Total rupees}{Rate} = \frac{6.023 \times 10^{23}}{10^6} = 6.023 \times 10^{17} Seconds$

Convert Seconds to Years:

1 year = $60 \times 60 \times 24 \times 365$ seconds = 3.154×10^{7} seconds

Chemistry : Stoichiometry

7th Class

Time (years) = $\frac{6.022 \times 10^{17}}{3.154 \times 10^7} \approx 1.909 \times 10^{10}$ years

12) Maximum number of atoms are present in

1) 11.2 lit. of SO_2 at STP	2) 22.4 lit. of Helium at STP
-------------------------------	-------------------------------

3) 22.4 lit of hydrogen 4) 11.2 litres of methane at STP

Answer:4

Solution: At STP (Standard Temperature and Pressure):

1 mole of any gas occupies 22.4 L.

Number of atoms = Number of molecules × atoms per molecule.

Option 1: 11.2 L of SO₂

Moles of $SO_2 = 11.2/22.4=0.5$ mole.

 SO_2 molecule: 1 S + 2 O = 3 atoms/molecule.

Total atoms = $0.5 \times 6.022 \times 10^{23} \times 3 = 9.033 \times 10^{23}$.

Option 2: 22.4 L of He

Moles of He = 22.4/22.4=1 mole.

He is monatomic: 1 atom/molecule.

Total atoms = 1×6.022×10²³×1=6.022×10²³

Option 3: 22.4 L of H2

Moles of $H_2 = 1$ mole.

 H_2 molecule: 2 atoms/molecule.

Total atoms = $1 \times 6.022 \times 10^{23} \times 2 = 12.044 \times 10^{23}$

Option 4: 11.2 L of CH4

Moles of $CH_4 = 0.5 \text{ mole.}$ ducational Operating System

 CH_4 molecule: 1 C + 4 H = 5 atoms/molecule.

Total atoms = 0.5×6.022×10 ²³×5=15.055×10 ²³

Option 4 (11.2 L of CH_4) has the maximum number of atoms.

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

```
1. Which of the following contains same number of atoms
```

1) 1 mole of H_2 2) 2mole of CO_2 3) 2 mole of He 4) 0.5 mole of O_3

Answer:1,3

Solution:1) 1 mole of $H_2=2$ atoms

Total Atoms=2(N)=2N

2) 2mole of CO_2 =1+2=3 Atoms

Total atoms=3x2xN=6N

3) 2 mole of He=2(1)=2 atom

Total atoms =2xN=2N

4) 0.5 mole of $O_3=0.5x3=1.5$ atoms

(7th Class) Total atoms=1.5N

Option 1 (1 mole of H_2) and Option 3 (2 mole of He) both contain 2N atoms.

2. The gas having same number of molecules as 0.5 mole of oxygen is

1) 0.5 moles of $\rm O_3~$ 2) 0.5 moles of $\rm SO_3~$ 3) 0.5 mole of $\rm SO_2~$ 4) 0.5 mole of hydrogen

Answer:1,2,3,4

Solution:Avogadro's Law: Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.

Moles \rightarrow Molecules: Depends only on the number of moles, not the gas identity.

STATEMENT TYPE

- 1. A and R are correct R is the correct explanation of A $% \mathcal{A}$
- 2. A and R are correct R is not the correct explanation of A $% \mathcal{A}$
- 3. A is correct, but R is wrong 4. A is wrong, but R is correct
- 3. Assertion (A): Mole is equal to 6.022×10^{23} particles.

Reason (R): 6.022×10^{23} particles is known as avagadro number

Answer:1

Solution:Assertion :True — By definition, 1 mole of any substance contains 6.022×10^{23} entities (atoms, molecules, ions, etc.)

Reason :True — This is the definition of Avogadro's number.

COMPREHENSION TYPE

4. The numbers of atoms present in 0.166 mooles of ozone is

1) N_A = 2) 3N_Aional Opera³)
$$\frac{N_A}{6}$$
 System 4) $\frac{N_A}{2}$

Answer:4

Solution:We are given:Amount of ozone $(O_3) = 0.166$ moles

We need to find the number of atoms, not molecules.

Let N_A = Avogadro's number = 6.022×10^{23}

1 molecule of ozone (O3) contains 3 atoms of oxygen.

So,1 mole of O_3 molecules contains:1 mole×3×N _A =3N _A atoms.

Therefore, "0.166 moles of O_3 contains: 0.166×3N_A=0.498N_A=N_A/2

5. Which of the following is a reasonable value for the numbers of atoms in 0.25 moles of helium ?

1) 0.25	2) 4.0	3) 4.1 x 10 ⁻²³	4) 1.5 x 10 ²³
(Topic- Mole Concept)		68

(7th Class)-Answer:4

Solution:Number of atoms = Number of moles × Avogadro's number (N).

Avogadro's number (N) = 6.022×10^{23} atoms/mole.

Helium (He) is a monatomic gas (1 atom per molecule).

Calculation:

Number of atoms=0.25 moles× 6.022×10^{23} atoms/mole= 1.5055×10^{23} atoms.

INTEGER TYPE

6. The number of oxygen atoms present in 0.25 moles of calcium carbonate

Answer:4.5165×10²³

Solution:Formula of Calcium Carbonate: CaCO₃

Contains 3 oxygen atoms per molecule.

Total Oxygen Atoms:

Number of atoms=Moles×Avogadro's number×Atoms per molecule

=0.25moles×6.022×10 23×3=4.5165×1023 oxygen atoms

7. 1 mole of Sulphuric acid contains _____ moles of hydrogen atoms

Answer:2

Solution:Formula of Sulphuric Acid: H₂SO₄

Contains 2 hydrogen atoms per molecule.

Moles of Hydrogen Atoms:

```
1 mole H_2SO_4 \times 2H atoms/molecule=2moles of H atoms.
```

MATRIX MATCHING TYPE

8.Answer:1-C,2-A,D-3,4-B cational Operating System

Column-I (For 1 mole)	Column-II
1) Nitric oxide	C) 1.204 × 10 ²⁴ atoms
2) Hydronium ion	A) 2.408×10^{24} atoms
3) Silver ions	D) 2.770×10^{25} electrons
4) Glucose	B) 1.445 × 10 ²⁵ atoms

Solution:1) Nitric oxide (NO)

Formula: NO \rightarrow 1 N + 1 O = 2 atoms/molecule.

Total atoms in 1 mole: $2 \times 6.022 \times 10^{23} = 1.204 \times 10^{24}$ atoms.

2) Hydronium ion (H_3O^+)

Formula: $H_3O^+ \rightarrow 3 H + 1 O = 4 \text{ atoms/ion}$.

Total atoms in 1 mole: $4 \times 6.022 \times 10^{23} = 2.408 \times 10^{24}$ atoms.

3) Ag^+ has 46 electrons (Ag atomic number = 47, minus 1 lost electron).

(7th Class)

Chemistry : Stoichiometry

Total electrons:46×6.022×10 ²³=2.770×10 ²⁵electrons.

Glucose (C₆H₁₂O₆)

Formula: $C_6H_{12}O_6 \rightarrow 6 C + 12 H + 6 O = 24 \text{ atoms/molecule}$.

Total atoms in 1 mole:24×6.022×10²³=1.445×10²⁵atoms

LEARNER'S TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

1. Atomicity is the number of

1) Protons present in the atom 2) Neutrons present in the atom

3) Atoms present in the molecule 4) Atoms present in 1 gram mole of a substance

Answer:3

Solution:Atomicity refers to the number of atoms in one molecule of a substance (e.g., $O_2 \rightarrow$ atomicity = 2).

2. Which of the following is the smallest particle of matter that exist independently?

A) Atom B) Molecule C) element D) compound

Answer:B

Solution:Molecules (e.g., O_2 , H_2O) can exist independently, while atoms (e.g., He, Ne) may or may not.

3. Which of the following is correct match

1) Atomic hydrogen - 6.022×10^{23} atoms 2) Zinc vapour - 6.022×10^{23} atoms

3) Ammonia - 6.023×10^{23} molecules 4) All the above

Answer:4

Solution:1 mole of any substance contains Avogadro's number (6.022 \times 10²³) of particles:

Atomic hydrogen (H): 6.022×10^{23} atoms.

Zinc vapour (Zn): 6.022×10^{23} atoms.

Ammonia (NH₃): 6.022×10^{23} molecules.

4. Which of the following is the correct formula to calculate number of moles

1) No. of moles = $\frac{\text{Number of particles}}{6.023 \times 10^{23}}$ 2) No. of moles = 6.023 x 10²³ / Number of particles 3) Both A & B 4) None

Answer:1

Solution: No. of moles = $\frac{\text{Number of particles}}{6.023 \times 10^{23}}$

5. Number of atoms present is one mole of Hydrogen gas

1) 1 mole2) 2 moles3) 3 moles4) 4 moles

Answer:2

(Topic- Mole Concept

(7th Cla	ss		Che	mistry : Stoichiometry				
Solutio	$n:H_2$ has 2 atom	s/molecule $\rightarrow 1 \text{ molecule}$		10^{23} atoms = 2 moles				
of atoms.								
6. I	Number of electrons present in 1 mole of sodium ion							
	1) 10 moles	2) 11 moles	3) 12 moles	4) 9 moles				
Answe	r:1							
Solutio	n:Na (atomic nu	mber 11) loses 1 el	ectron to form Na ⁺	→10 electrons/ion.				
1 mole	$Na^{+} = 10 \times 6.02$	2×10^{23} electrons =	• 10 moles of electro	ons.				
7. I	Number of atoms	s present in 2 moles	s of Hydrogen sulpl	nide				
	1) 12.046 x 10^{23}	2) 18.069 x 10 ²³	3) 6.023 x 10 ²³	4) 3.0115 x 10 ²³				
Answe		,	,	,				
	$n:H_2S$ has 3 atom atoms.	ms/molecule $\rightarrow 2 \text{ m}$	noles $H_2S = 2 \times 3 \times 6$	5.022 × 10 ²³ == 3.613				
Closest	t option: 18.069	× 10 ²³ (typo; likely :	meant 3.613 × 10 ²²	4).				
8. I	Number of moles	of sub atomic partie	cles present in 1 mo	le of Hydrogen atoms				
	1) 0	2) 1	3) 2	4) 4				
Answe	r:3							
Solutio	n:Hydrogen ator	n (1H): 1 proton + 1	electron = 2 subat	omic particles/atom.				
1 mole	$H = 2 \times 6.022 \times$	10^{23} particles = 2 r	noles of subatomic	particles.				
9. 7	The number of re	evolving sub atomic	particles in 1 mole	of helium is				
	1) 0	2) 2	3) 1	4) 4				
Answe	r:2							
revolvii	ng).	-		tons/neutrons (non-				
1 mole	$He = 2 \times 6.022$	$\times 10^{23}$ electrons = 2	moles of revolving	particles.				
	1) 6.023	2) 5.023	3) 5.023 x 101	4) 5.023 x 10 ²³				
Answe	r:4							
Solution:1 mole NO ₂ = 6.022×10^{23} molecules.								
Remain	Remaining molecules = $6.022 \times 10^{23} - 1 \times 10^{23} = 5.022 \times 10^{23}$.							

JEE MAIN LEVEL QUESTIONS

- 11. One mole of CO_2 contains
 - a) 6.02×10^{23} atoms of C b) 6.02×10^{23} atoms of O
 - c) 18.1×10^{23} molecules of CO₂ d) 3 gram of carbon.

Answer:A

Solution:Understand 1 Mole of CO_2

```
7th Class
```

Avogadro's number (N)=6.022×10²³ entities/mole. 1 mole of CO₂ contains:6.022×10²³ molecules of CO₂ 1 atom of C and 2 atoms of O per molecule. 12. Which of the following contains maximum number of atoms ? b) 6.0 mole of S a) 2.0 mole of S_{s} . c) 5.5 mole of SO_2 . d) 4 moles of CO Answer:C Solution:a) S8: 8 atoms/molecule $\rightarrow 2 \times 8 \times 6.022 \times 10^{23} = 9.635 \times 10^{24}$ atoms. b) S: 1 atom/molecule \rightarrow 6 × 6.022 × 10²³ = 3.613 × 10²⁴ atoms. c) SO2: 3 atoms/molecule $\rightarrow 5.5 \times 3 \times 6.022 \times 10^{23} = 9.936 \times 10^{24}$ atoms. d) CO: 2 atoms/molecule \rightarrow 4 × 2 × 6.022 × 10²³ = 4.818 × 10²⁴ atoms. 13. 1 mole of ${}^{14}_{7}$ N⁻³ ions contains 1) $7 \times 6.023 \times 10^{23}$ electrons 2) $7 \times 6.023 \times 10^{23}$ protons 3) $7 \times 6.023 \times 10^{23}$ neutrons 4) $14 \times 6.023 \times 10^{23}$ protons Answer:2,3 Solution: Atomic number (Z) = $7 \rightarrow 7$ protons Mass number (A) = 14Neutrons = 14 - 7 = 7 neutrons Charge = $3 \rightarrow$ means 3 extra electrons than protons So, electrons = 7 + 3 = 10 electrons Operating System Avogadro's number $N_A = 6.022 \times 10^{23}$

Number of: Electrons = $10N_{A}$

3) Both A & B

Protons = $7N_{A}$

Neutrons = $7N_A$

- 14. One mole of sodium represents
 - 1) 6.02×10^{23} atoms of sodium
- 2) 6.02×10^{23} molecules of sodium 4) None

Answer:1

Solution: 1 mole of any substance, be it atoms/molecules /ions or even subatomic particles like

electrons, protons or neutrons, they all contain Avogadro Number 6.02×10^{23} particles.

So, 1 mole of sodium = 6.02×10^{23} atoms of sodium

or, 1 mole of sodium =23 g, which is its atomic mass per mole.

(7th Class Chemistry : Stoichiometry 15. The charge present on 1 mole electrons is 3) 1.60×10⁻¹⁹ C 1) 96500 Coulombs 2) Coulomb 4) 0.1 Faraday Answer:1 Solution: 1 mole of electrons = 1 Faraday = 96,500 C. 16) Which of the following contians less number of molecules 1) 0.25 moles of CO_2 2) 0.5 mole of SO_2 3) 1 mole of hydrogen 4) 1 mole of helium Answer:1 Solution: 1 Molecules = moles × Avogadro's number (N). $0.25 \text{ mol CO}_2 = 0.25 \text{N}.$ Others: 0.5N (SO₂), 1N (H₂/He). 17) Maximum number of electrons are present in 1) 1 mole of SO_2 2) 0.2 moles of NH_3 3) 1.5 moles of oxygen 4) 2 mole atoms of of sulphur Answer:1,4 Solution:SO₂: 32 e (16 per S + 8 per O × 2) \rightarrow 1 × 32 × N = 32N. NH_3 : 10 e⁻ \rightarrow 0.2 × 10 × N = 2N. O_2 : 16 e⁻ \rightarrow 1.5 × 16 × N = 24N. S (atomic): $16 e^- \rightarrow 2 \times 16 \times N = 32N$. 18) Atomicity of oleum $(H_2S_2O_7)$ is 2) 8 3) 7 4) 18 Educational Operating System 1) 11 Answer:1 Solution: Atomicity of oleum $(H_2S_2O_7)=2 H + 2 S + 7 O = 11 atoms.$ 19) The number of moles present in 1.505×10^{23} molecules of H_2SO_4 is 1)2.52) 0.5 3) 4 4) 0.25 Answer:4 Solution:Moles= $\frac{1.505 \times 10^{23}}{6.023 \times 10^{23}} = 0.25.$ 20) The number of carbon atoms present in 0.1 moles of carbon monoxide are 2) 3.01×0^{22} 3) 6.02×10^{23} 1) 3.01×10^{23} 4) 6.02 x 10²² Answer:4

Solution:CO: 1 C/molecule $\rightarrow 0.1 \times 6.022 \times 10^{23} = 6.022 \times 10^{22}$ atoms.

(Topic- Mole Concept

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

21) A pair of gasses having same number of atoms are

1) 1 mole of H_2 2) 2 moles of He 3) 0.25 moles of CO_2 4) 1 mole of N_2 Answer:1,2,4

Solution:Calculate Total Atoms for Each Option:

Avogadro's number (N) = 6.022×10^{23} entities/mole.

Option 1: 1 mole of H₂

 H_2 is diatomic (2 atoms/molecule).

Total atoms = $1 \times 2 \times N = 2N$.

Option 2: 2 moles of He

He is monatomic (1 atom/molecule).

Total atoms = $2 \times 1 \times N = 2N$.

Option 3: 0.25 moles of CO_2

 CO_2 has 3 atoms/molecule (1 C + 2 O).

Total atoms = $0.25 \times 3 \times N = 0.75N$.

STATEMENT TYPE

22. Assertion (A): 1 mole of magnesium ion contains 12 moles of protons Reason (R): Mole is equal to 6.022×10^{23} particles.

Answer:2

Solution: Evaluate Assertion (A):

Magnesium ion (Mg^{2+}) :

Atomic number of Mg = $12 \rightarrow 12$ protons per ion.

1 mole of Mg²⁺ = $12 \times 6.022 \times 10^{23}$ protons = 12 moles of protons.

Conclusion: Assertion (A) is correct.

Evaluate Reason (R):

Definition of mole:

1 mole = 6.022×10^{23} particles (Avogadro's number).

Conclusion: Reason (R) is correct.

INTEGER TYPE

23. The number of moles of elctrons in 2 moles of Aluminium ions is _____

Answer:20

Solution: Atomic number of Al = $13 \rightarrow$ Neutral Al has 13 electrons.

Al³⁺ loses 3 electrons $\rightarrow 10$ electrons per ion.

Total Electrons in 2 Moles of Al³⁺:

Electrons=2moles Al³⁺×10 electrons/ion=20moles of electrons

24. 1 mole of protons charge in faraday is _____

Answer:1

Solution: Charge of 1 Proton:

(Topic- Mole Concept

Chemistry : Stoichiometry

Proton charge = +1.602×10 ⁻¹⁹C. Charge of 1 Mole of Protons: 1mole protons×1.602×10 ⁻¹⁹C/proton×6.022×10 ²³protons/mole=96,485C=1Faraday (F).

MATRIX MATCHING TYPE

25)Answer:A-4,B-3,C-2,D-1

List - I	List - II
(No. of moles of compound)	(No. of moles of the oxygen atoms)
A) 1.5 Moles of BaCO ₃	4) 4.5
B) 2 moles of H_2SO_4	3) 8
C) 2.5 moles of ZnCO ₃	2) 7.5
D) 0.5 mole of glucose	1) 3

Solution:

A) 1.5 Moles of BaCO₃ Total moles of O: $1.5 \times 3=4.5$ B) 2 moles of H₂SO₄ Total moles of O: $2 \times 4=8$ C) 2.5 moles of ZnCO₃ Total moles of O: $2.5 \times 3=7.5$ D) 0.5 mole of glucose(C₆H₁₂O₆) Total moles of O: $0.5 \times 6=3$

Chemistry : Stoichiometry

KEY

1,2,4		2	20	1	A-4,B-3,C-	2,D-1				
	21	22								
					ADVANCE	d level Q	UESTIONS			
Α		С	2,3	1	1	1	1,4	1	4	4
	11	12	13	14	15	16	17	18	19	20
					JEE MAIN LEVEL QUESTIONS					
	3	В	4	1	2	1	2	3	2	4
	1	2	3	4	5	6	7	8	9	10
					CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ					
					LEARNER'	S TASK				
1,3		1, 2, 3, 4	1	4	4	4.5165×10	2	1-C,2-A,D-	3,4-B	
	1	2	3	4	5	6	7	8		
					ADVANCE	ADVANCED LEVEL QUESTIONS				
	2	4								
	11	12								
none		3	3	2	2	4	1	1	4	2
	1	2	3	4	5	6	7	8	9	10
					JEE MAIN	LEVEL QUE	STIONS			
					TEACHING	TASK				

Educational Operating System

