Maths

1AL 2020-21

• SEQUENCE AND SERIES •

SEQUENCE

A succession of terms a_1, a_2, a_3, a_4 formed according to some rule or law.

Examples are: 1, 4, 9, 16, 25

 $-1, 1, -1, 1, \dots$

$$\frac{x}{1!}, \frac{x^2}{2!}, \frac{x^3}{3!}, \frac{x^4}{4!}, \dots$$

REAL SEQUENCE

A sequence whose range is a subset of R is called a real sequence.

- (i) 2, 5, 8, 11,
 - (ii) $4, 1, -2, -5, \dots$
 - **(iii)** 3, -9, 27, -81,

A finite sequence has a finite (i.e. limited) number of terms. An infinite sequence has an unlimited number of terms, i.e. there is no last term.

SERIES

E.g.

The indicated sum of the terms of a sequence. In the case of a finite sequence $a_1, a_2, a_3, \dots, a_n$ the corresponding

series is $a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$. This series has a finite or limited number of terms and is called a finite series.

PROGRESSION

The word progression refers to sequence or series - finite or infinite

Arithmetic Progression (A.B.)

A.P. is a sequence whose terms differ by a fixed number. This fixed number is called the common difference. If a is the first term & d the common difference, then A.P. can be written as

$$a, a+d, a+2d, \dots, a+(n-1)d, \dots$$

(a)
$$n^{\text{th}}$$
 term of AP $T_n = a + (n-1)d$, where $d = t_n - t_{n-1}$

(b) The sum of the first n terms :
$$S_n = \frac{n}{2}[a+\ell] = \frac{n}{2}[2a+(n-1)d]$$

where l is the last term.

KEY POINTS

- (i) n^{th} term of an A.P. is of the form An + B i.e. a linear expression in 'n', in such a case the coefficient of n is the common difference of the A.P. i.e. A.
- (ii) Sum of first 'n' terms of an A.P. is of the form An² + Bn i.e. a quadratic expression in 'n', in such case the common difference is twice the coefficient of n². i.e. 2A
- (iii) Also nth term $T_n = S_n S_{n-1}$

Sequence and Series

Sol.

 \Rightarrow

Ex. If t_{44} of an A.P. is -61 and $t_{44} = 64$, find t_{10} .

Let a be the first term and d be the common difference
so
$$t_{54} = a + 53d = -61$$
(i)
and $t_4 = a + 3d = 64$ (ii)
equation (i) - (ii) we get
 $\Rightarrow 50d = -125$
 $d = -\frac{5}{2}$
 $\Rightarrow a = \frac{143}{2}$ So $t_{10} = \frac{143}{2} + 9\left(-\frac{5}{2}\right) = 49$

If (x + 1), 3x and (4x + 2) are first three terms of an A.P. then find its 5th term. Ex. (x+1), 3x, (4x+2) are in AP Sol.

$$\Rightarrow 3x - (x+1) = (4x+2) - 3x \Rightarrow x=3$$

$$\therefore a=4, d=9 - 4 = 5 \Rightarrow T_5 = 4 + 4(5) = 24$$

Ex. Find the sum of all natural numbers divisible by 5, but less than 100.

Sol. All those numbers are 5, 10, 15, 20,, 95. a = 5, n = 19 & 1 = 95Here $S = \frac{19}{2}(5+95) = 950.$ So

Ex. If
$$(x + 1)$$
, $3x$ and $(4x + 2)$ are first three terms of an A.P. then find its 5th term.
Sol. $(x + 1)$, $3x$, $(4x + 2)$ are in AP
 $\Rightarrow 3x - (x + 1) = (4x + 2) - 3x \Rightarrow x = 3$
 $\therefore a = 4, d = 9 - 4 = 5 \Rightarrow T_5 = 4 + 4(5) = 24$
Ex. Find the sum of all natural numbers divisible by 5, but less than 100.
Sol. All those numbers are 5, 10, 15, 20,, 95.
Here $a = 5, n = 19 \& 1 = 95$
So $S = \frac{19}{2} (5 + 95) = 950.$
Ex. The sum of first n terms of two A.Ps. are in ratio $\frac{7n + 1}{2}$. Find the ratio of their 11th terms.

4n + 27Let a, and a, be the first terms and d, and d, be the common differences of two A.P.s respectively then Sol.

$$\frac{\frac{n}{2}[2a_1 + (n-1)d_1]}{\frac{n}{2}[2a_2 + (n-1)d_2]} = \frac{7n+1}{4n+27} \implies a_1 + \left(\frac{n-1}{2}\right)d_1 \\ \Rightarrow a_2 + \left(\frac{n-1}{2}\right)d_2 = \frac{7n+1}{4n+27}$$

For ratio of 11th terms

$$\frac{n-1}{2} = 10 \qquad \qquad n = 21$$

so ratio of 11th terms is $\frac{7(21)+1}{4(21)+27} = \frac{148}{111} = \frac{4}{3}$

Properties of A.P.

- **(i)** The first term and common difference can be zero, positive or negative (or any complex number.)
- If a, b, c are in A.P. \Rightarrow 2 b = a + c & if a, b, c, d are in A.P. \Rightarrow a + d = b + c. **(ii)**
- Three numbers in A.P. can be taken as a d, a, a + d; (iii)

four numbers in A.P. can be taken as a-3d, a-d, a+d, a+3d;

five numbers in A.P. are a-2d, a-d, a, a+d, a+2d;

six terms in A.P. are a-5d, a-3d, a-d, a+d, a+3d, a+5d etc.

- The sum of the terms of an A.P. equidistant from the beginning & end is constant and equal to the sum of **(iv)** first & last terms.
- **(v)** Any term of an A.P. (except the first) is equal to half the sum of terms which are equidistant from it.

$$a_n = 1/2 (a_{n-k} + a_{n+k}), k < n.$$
 For $k = 1, a_n = (1/2) (a_{n-1} + a_{n+1});$

for
$$k = 2$$
, $a_n = (1/2)(a_{n-2} + a_{n+2})$ and so on.

Sequence and Series

Sol.

Ex.

Sol.

- (vi) If each term of an A.P. is increased, decreased, multiplied or divided by the same non-zero number, then the resulting sequence is also an AP.
- (vii) The sum and difference of two AP's is an AP.
- (viii) k^{th} term from the last = $(n k + 1)^{th}$ term from the beginning.

Ex. Four numbers are in A.P. If their sum is 20 and the sum of their squares is 120, then find the middle terms.

Let the numbers are a - 3d, a - d, a + d, a + 3dgiven, a - 3d + a - d + a + d + a + 3d = 20 $4a = 20 \implies a = 5$ $4a^2 + 20d^2 = 120$ $(a-3d)^{2}+(a-d)^{2}+(a+d)^{2}+(a+3d)^{2}=120$ and $4 \times 5^2 + 20d^2 = 120$ ⇒ MATRIAL 2020-21 ⇒ $d^2 = 1 \not P d = \pm 1$ Hence numbers are 2, 4, 6, 8 If $a_1, a_2, a_3, \dots, a_n$ are in A.P. where $a_i > 0$ for all i, show that : $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{(n-1)}{\sqrt{a_1} + \sqrt{a_n}}$ L.H.S. = $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$ $=\frac{1}{\sqrt{a_{2}}+\sqrt{a_{1}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{2}}}+\dots+\frac{1}{\sqrt{a_{n}}+\sqrt{a_{n-1}}}$ $=\frac{\sqrt{a_2}-\sqrt{a_1}}{(a_2-a_1)}+\frac{\sqrt{a_3}-\sqrt{a_2}}{(a_3-a_2)}+\ldots+\frac{\sqrt{a_n}-\sqrt{a_{n-1}}}{a_n-a_{n-1}}$ Let 'd' is the common difference of this A.P. then $a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = d$ Now L.H.S.

$$= \frac{1}{d} \left\{ \sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \dots + \sqrt{a_{n-1}} - \sqrt{a_{n-2}} + \sqrt{a_n} - \sqrt{a_{n-1}} \right\} = \frac{1}{d} \left\{ \sqrt{a_n} - \sqrt{a_1} \right\}$$
$$= \frac{a_n - a_1}{d\left(\sqrt{a_n} + \sqrt{a_1}\right)} = \frac{a_1 + (n-1)d - a_1}{d\left(\sqrt{a_n} + \sqrt{a_1}\right)} = \frac{1}{d} \frac{(n-1)d}{(\sqrt{a_n} + \sqrt{a_1})} = \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}} = R.H.S.$$

Geometric Progression (G.P.)

G.P. is a sequence of non zero numbers each of the succeeding term is equal to the preceeding term multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the COMMON RATIO of the sequence & is obtained by dividing any term by the immediately previous term. Therefore a, ar, ar², ar³, ar⁴, is a GP with 'a' as the first term & 'r' as common ratio.

- (a) n^{th} term; $T_n = a r^{n-1}$
- (b) Sum of the first n terms; $S_n = \frac{a(r^n 1)}{r 1}$, if $r \neq 1$
- (c) Sum of infinite G.P., $S_{\infty} = \frac{a}{1-r}; \ 0 < |\mathbf{r}| < 1$

Sequence and Series

141

Maths

Ex. If the first term of G.P. is 7, its nth term is 448 and sum of first n terms is 889, then find the fifth term of G.P.

Given
$$a = 7$$

 $t_n = ar^{n-1} = 7(r)^{n-1} = 448$.
 $\Rightarrow 7r^n = 448 r$

Also $S_n = \frac{a(r^n - 1)}{r - 1} = \frac{7(r^n - 1)}{r - 1}$ $\Rightarrow 889 = \frac{448r - 7}{r - 1} \Rightarrow r = 2$ Hence $T_5 = ar^4 = 7(2)^4 = 112$.

Ex. Let
$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
, find the sum of
(i) first 20 terms of the series

 $S_{20} = \frac{\left(1 - \left(\frac{1}{2}\right)^{20}\right)}{1 - \frac{1}{2}} = \frac{2^{20} - 1}{2^{19}}.$

Sol.

infinite terms of the series. $S_{\infty} = \frac{1}{1 - \frac{1}{2}} = 2.$ **(ii)**

If each term of a G.P. be multiplied or divided by the some non-zero quantity, then the resulting sequence is also a G.P. **(a)**

(ii)

Three consecutive terms of a GP: a/r, a, ar; **(b)**

Four consecutive terms of a GP : a/r^3 , a/r, ar, ar^3 & so on.

- If a, b, c are in G.P. then $b^2 = ac$. **(c)**
- If in a G.P, the product of two terms which are equidistant from the first and the last term, is constant and is equal to **(d)** the product of first and last term. \Rightarrow $T_k T_{n-k+1} = \text{constant} = a.1$
- If each term of a G.P. be raised to the same power, then resulting sequence is also a G.P. **(e)**

(f) In a G.P.,
$$T_r^2 = T_{r-k} \cdot T_{r+k}$$
, $k < r, r \neq 1$

- If the terms of a given G.P. are chosen at regular intervals, then the new sequence is also a G.P. (g)
- If $a_1, a_2, a_3, \dots, a_n$ is a GP of positive terms, then $\log a_1, \log a_2, \dots, \log a_n$ is an A.P. and vice-versa. **(h)**

(i) If
$$a_1, a_2, a_3, \dots$$
 and b_1, b_2, b_3, \dots are two G.P.'s then $a_1b_1, a_2b_2, a_3b_3, \dots$ & $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \dots$ is also in G.P.

Find three numbers in G.P. having sum 19 and product 216. Ex.

Sol. Let the three numbers be
$$\frac{a}{r}$$
, a, ar

so
$$a\left[\frac{1}{r}+1+r\right] = 19$$
(i)
and $a^3 = 216 \Rightarrow a = 6$
so from (i) $6r^2 - 13r + 6 = 0$.
 $\Rightarrow r = \frac{3}{2}, \frac{2}{3}$

Hence the three numbers are 4, 6, 9.

Sequence and Series

Ex.	If a, b, c, d and p are distinct real numbers such that
	$(a^2 + b^2 + c^2)p^2 - 2p(ab + bc + cd) + (b^2 + c^2 + d^2) \le 0$ then which progession is suitable for a, b, c, d.
Sol.	Here, the given condition $(a^2 + b^2 + c^2)p^2 - 2p(ab + bc + ca) + b^2 + c^2 + d^2 \le 0$
	$\Rightarrow (ap-b)^{2} + (bp-c)^{2} + (cp-d)^{2} \le 0$ Q a square can not be negative
	$\therefore ap-b=0, bp-c=0, cp-d=0 \implies p=\frac{b}{a}=\frac{c}{b}=\frac{d}{c} \implies a, b, c, d \text{ are in G.P.}$
Ex.	Using G.P. express $0.\overline{3}$ and $1.2\overline{3}$ as $\frac{p}{q}$ form.
Sol.	Let $x = 0.\overline{3} = 0.3333 \dots$
	$= 0.3 + 0.03 + 0.003 + 0.0003 + \dots$
	$=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10000}+\dots$
	Let $x = 0.\overline{3} = 0.3333 \dots$ $= 0.3 + 0.03 + 0.003 + 0.0003 + \dots$ $= \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \frac{3}{10000} + \dots$ $= \frac{\frac{3}{10}}{1 - \frac{1}{10}} = \frac{3}{9} = \frac{1}{3}.$ Let $y = 1.2\overline{3}$ = 1.233333 $= 1.2 + 0.03 + 0.003 + 0.0003 + \dots$ $= 1.2 + \frac{3}{10^2} + \frac{3}{10^3} + \frac{3}{10^4} + \dots$
	Let $y = 1.2\overline{3}$
	=1.233333
	$= 1.2 + 0.03 + 0.003 + 0.0003 + \dots$
	$= 1.2 + \frac{3}{10^2} + \frac{3}{10^3} + \frac{3}{10^4} + \dots$
	$= 1.2 + \frac{\frac{3}{10^2}}{1 - \frac{1}{10}} = 1.2 + \frac{1}{30} = \frac{37}{30}.$
	Harmonic Progression (H.P.)

Harmonic Progression (H.P.) A sequence is said to be in H.P. if the reciprocal of its terms are in AP. If the sequence $a_1, a_2, a_3, \dots, a_n$ is an HP then $1/a_1, 1/a_2, \dots, 1/a_n$ is an AP. Here we do not have the formula for the sum of the n terms of an HP. The general form of a harmonic progression is $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots, \frac{1}{a+(n-1)d}$ No term of any H.P. can be zero.

(a) Here we do not have the formula for the sum of the n terms of an H.P.. For H.P. whose first term is a and second term is b, the nth term is $t_n = \frac{ab}{b + (n-1)(a-b)}$.

KEY POINTS

 (i) If a, b, c are in H.P.
$$\Rightarrow b = \frac{2ac}{a+c}$$
 or $\frac{a}{c} = \frac{a-b}{b-c}$.

 (ii) If a, b, c are in A.P. $\Rightarrow \frac{a-b}{b-c} = \frac{a}{a}$.

 (iii) If a, b, c are in G.P. $\Rightarrow \frac{a-b}{b-c} = \frac{a}{b}$.

 Sequence and Series

If $\frac{1}{a} + \frac{1}{c} + \frac{1}{a-b} + \frac{1}{c-b} = 0$, prove that a, b, c are in H.P, or b = a + c Ex. We have $\frac{1}{a} + \frac{1}{c} + \frac{1}{a-b} + \frac{1}{c-b} = 0$, Sol. $\frac{a+c}{ac} + \frac{c-b+a-b}{(a-b)(c-b)} \implies \frac{a+c}{ac} + \frac{(a+c)-2b}{ac-b(a+c)+b^2} = 0$ ⇒ Let $\frac{\lambda}{ac} + \frac{\lambda - 2b}{ac - b\lambda + b^2} = 0$ $\frac{ac\lambda - b\lambda^2 + b^2\lambda + ac\lambda - 2abc}{ac(ac - b\lambda + b^2)} = 0$ ⇒ (:: a+c=1) $2acl - bl^2 + b^2l - 2abc = 0$ \Rightarrow 2ac(1-b) - bl(1-b) = 0 \Rightarrow (2ac - bl)(1 - b) = 0 \Rightarrow $l = b \text{ or } \lambda = \frac{2ac}{b}$ ⇒ $\Rightarrow \qquad \mathbf{a} + \mathbf{c} = \mathbf{b} \text{ or } \mathbf{a} + \mathbf{c} = \frac{2ac}{b}$ a + c = b or $b = \frac{2ac}{a+c}$ ⇒ a, b, c are in H.P. or a + c = b. If m^{th} term of H.P. is n, while n^{th} term is m, find its $(m+n)^{th}$ term. Ex. Given $T_m = n$ or $\frac{1}{a + (m-1)d} = n$; where a is the first term and d is the common difference of the Sol. corresponding A.P. $a+(m-1)d=\frac{1}{n}$ so

and
$$a + (n-1) d = \frac{1}{m}$$
 $(m-n)d = \frac{m-n}{mn}$
or $d = \frac{1}{mn}$ So $a = \frac{1}{n} - \frac{(m-1)}{mn} = \frac{1}{mr}$
Hence $T_{(m+n)} = \frac{1}{a + (m+n-1) d} = \frac{mn}{1+m+n-1} = \frac{mn}{m+n}$.

MEANS

(a) Arithmetic Mean (A.M.)

If three terms are in A.P. then the middle term is called the A.M. between the other two, so if a, b, c are in A.P., b is

A.M. of a & c. So A.M. of a and
$$c = \frac{a+c}{2} = b$$
.

n-Arithmetic Means Between two Numbers

If a,b be any two given numbers & a, A₁, A₂, ..., A_n, b are in AP, then A₁, A₂,..., A_n are the 'n' A.M's between a & b then. A₁ = a + d, A₂ = a + 2d, ..., A_n = a + nd or b - d, where $d = \frac{b-a}{n+1}$ $b-a = \frac{2(b-a)}{n+1}$

$$\Rightarrow \qquad A_1 = a + \frac{b-a}{n+1}, \ A_2 = a + \frac{2(b-a)}{n+1}, \dots$$

Sequence and Series

144

ETOOS KEY POINTS

Sum of n A.M's inserted between a & b is equal to n times the single A.M. between

a & b i.e.
$$\sum_{r=1}^{n} A_r = nA$$
 where A is the single A.M. between a & b.

Ex. Insert 20 A.M. between 2 and 86.

Sol. Here 2 is the first term and 86 is the
$$22^{nd}$$
 term of A.P. so $86 = 2 + (21)d$

 \Rightarrow d = 4

so the series is 2, 6, 10, 14,....., 82, 86

- :. required means are 6, 10, 14,...,82.
- Ex. Between two numbers whose sum is $\frac{13}{6}$, an even number of A.M.s is inserted, the sum of these means exceeds their number by unity. Find the number of means.
- Sol. Let a and b be two numbers and 2n A.M.s are inserted between a and b, then

$$\frac{2n}{2} (a+b) = 2n+1.$$

$$n\left(\frac{13}{6}\right) = 2n+1.$$

$$p = 6.$$
Number of means = 12.

(b) Geometric Mean (G.M.)

=

If a, b, c are in G.P., then b is the G.M. between a & c, $b^2 = ac$. So G.M. of a and $c = \sqrt{ac} = b$

n-Geometric Means Between two Numbers

If a, b are two given positive numbers & a, G_1, G_2, \dots, G_n , b are in G.P. Then $G_1, G_2, G_3, \dots, G_n$ are 'n' G.Ms between a & b.

$$G_1 = a(b/a)^{1/n+1}$$
, $G_2 = a(b/a)^{2/n+1}$,, $G_n = a(b/a)^{n/n+1}$
= ar, = ar²,, $G_n = a(b/a)^{n/n+1}$
= arⁿ = b/r, where r = (b/a)^{1/n}

The product of n G.M.s between a & b is equal to the nth power of the single G.M. between a & b i.e. $\prod_{r=1}^{n} G_r = (\sqrt{ab})^n = G^n$, where G is the single G.M. between a & b.

Ex. Insert 4 G.M.s between 2 and 486.

Sol. Common ratio of the series is given by $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}} = (243)^{1/5} = 3$ Hence four G.M.s are 6, 18, 54, 162.

Sequence and Series

145

Maths

(c) Harmonic Mean (H.M.)

If a, b, c are in H.P., then b is H.M. between a & c. So H.M. of a and $c = \frac{2ac}{a+c} = b$. n-Harmonic Means Between two Numbers

a, H₁, H₂, H₃,...,H_n, b
$$\rightarrow$$
 H.P

$$\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{H_3}, \dots, \frac{1}{H_n}, \frac{1}{b} \rightarrow A.P.$$

$$\frac{1}{b} = \frac{1}{a} + (n+1)D \qquad \Rightarrow \qquad D = \frac{\frac{1}{b} - \frac{1}{a}}{n+1}$$

$$\frac{1}{H_n} = \frac{1}{a} + n \left(\frac{\frac{1}{b} - \frac{1}{a}}{n+1}\right)$$

Insert 4 H.M between $\frac{2}{3}$ and $\frac{2}{13}$. Ex.

Let 'd' be the common difference of corresponding A.P.. $13 \quad 3$ Sol.

$$\frac{b}{d} = \frac{a}{n+1}$$

$$\frac{1}{H_n} = \frac{1}{a} + n \left(\frac{\frac{1}{b} - \frac{1}{a}}{n+1}\right)$$
Insert 4 H.M between $\frac{2}{3}$ and $\frac{2}{13}$.
Let 'd' be the common difference of corresponding A.P..
So $d = \frac{\frac{13}{2} - \frac{3}{2}}{5} = 1$.
 $\therefore \qquad \frac{1}{H_1} = \frac{3}{2} + 1 = \frac{5}{2} \qquad \text{or} \qquad H_1 = \frac{2}{5}$

$$\frac{1}{H_2} = \frac{3}{2} + 2 = \frac{7}{2} \qquad \text{or} \qquad H_2 = \frac{2}{7}$$

$$\frac{1}{H_3} = \frac{3}{2} + 3 = \frac{9}{2} \qquad \text{or} \qquad H_4 = \frac{2}{9}$$

$$\frac{1}{H_4} = \frac{3}{2} + 4 = \frac{11}{2} \qquad \text{or} \qquad H_4 = \frac{2}{11}$$

RELATION BETWEEN A.M. , GM. , H.M.

(i) If A, G, H are respectively A.M., G.M., H.M. between a & b both being positive, then $G^2 = AH$ (i.e. A, G, H are in G.P.) and $A \ge G \ge H$.

A.M. \geq G.M. \geq H.M.

Let $a_1, a_2, a_3, \dots, a_n$ be n positive real numbers, then we define their

A.M. =
$$\frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$$
, their
G.M. = $(a_1 a_2 a_3 \dots a_n)^{1/n}$ and their
H.M. = $\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$.

It can be shown that

A.M. \geq G.M. \geq H.M. and equality holds at either places iff

$$a_1 = a_2 = a_3 = \dots = a_r$$

Sequence and Series

Maths

The A.M. of two numbers exceeds the G.M. by $\frac{3}{2}$ and the G.M. exceeds the H.M. by $\frac{6}{5}$; find the numbers. Ex. Let the numbers be a and b, now using the relation Sol.

$$G^{2} = AH = \left(G + \frac{3}{2}\right) \left(G - \frac{6}{5}\right) = G^{2} + \frac{3}{10} G - \frac{9}{5}$$

G = 6
ab = 36

a + b = 15also

⇒ i.e.

Hence the two numbers are 3 and 12.

- If $2x^3 + ax^2 + bx + 4 = 0$ (a and b are positive real numbers) has 3 real roots, then prove that $a + b \ge 6(2^{1/3} + 4^{1/3})$. Ex.
- Let a, b, g be the roots of $2x^3 + ax^2 + bx + 4 = 0$. Given that all the coefficients are positive, so all the roots Sol. $a_1 + a_2 + a_3 = \frac{a}{2}$ will be negative.

Let
$$a_1 = -a$$
, $a_2 = -b$, $a_3 = -g$
 $a_1a_2 + a_2a_3 + a_3a_1 = \frac{b}{2}$

 $a_1 a_2 a_3 = 2$

Ex.

Applying $AM \ge GM$, we have

$$\frac{\alpha_1 + \alpha_2 + \alpha_3}{3} \ge (\alpha_1 \alpha_2 \alpha_3)^{1/3} \implies a \ge 6 \times 2^{1/3}$$
Also
$$\frac{\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3}{3} > (\alpha_1 \alpha_2 \alpha_3)^{2/3} \implies b^3 6 \times 4^{1/3}$$

Therefore $a + b \ge 6(2^{1/3} + 4^{1/3})$.

Ex.If a, b, c > 0, prove that
$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge$$
Sol.Using the relation A.M. \ge G.M. we have

$$\frac{\frac{a}{b} + \frac{b}{c} + \frac{c}{a}}{3} \ge \left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}\right)^{\frac{1}{3}} \implies \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$$

ARITHMETICO - GEOMETRIC SERIES

A series, each term of which is formed by multiplying the corresponding term of an A.P. & G.P. is called the Arithmetico-Geometric Series, e.g. $1+3x+5x^2+7x^3+...$

Here 1, 3, 5, are in A.P. & 1, x, x², x³ are in G.P.

Sum of n terms of an Arithmetico-Geometric Series **(a)**

Let $S_n = a + (a + d)r + (a + 2d)r^2 + \dots + [a + (n - 1)d]r^{n-1}$

then
$$S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d] r^n}{1-r}, r \neq 1$$

Sum of n terms of an Arithmetico-Geometric Series when $n \rightarrow \infty$ **(b)**

If 0 < |r| < 1 & $n \to \infty$, then $\lim_{n \to \infty} r^n = 0$, $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

Sequence and Series

Ex. Find the sum of the series
$$1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$$
 to n terms.
Sol. Let $S = 1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots + \frac{3n-2}{5^{n-1}}$ (i)
 $\left(\frac{1}{5}\right) S = \frac{1}{5} + \frac{4}{5^2} + \frac{7}{5^3} + \dots + \frac{3n-5}{5^{n-1}} + \frac{3n-2}{5^n}$ (ii)
(i) - (ii) \Rightarrow
 $\frac{4}{5} S = 1 + \frac{3}{5} + \frac{3}{5^2} + \frac{3}{5^3} + \dots + \frac{3}{5^{n-1}} - \frac{3n-2}{5^n}$.
 $\frac{4}{5} S = 1 + \frac{3}{5} \left(\frac{1-\left(\frac{1}{5}\right)^{n-1}}{1-\frac{1}{5}} - \frac{3n-2}{5^n} = 1 + \frac{3}{4} - \frac{3}{4} \times \frac{1}{5^{n-1}} - \frac{3n-2}{5^n}$
 $= \frac{7}{4} - \frac{12n+7}{4.5^n}$ \therefore $S = \frac{35}{16} - \frac{(12n+7)}{16.5^{n-1}}$
Ex. Find the sum of series $4 - 9x + 16x^2 - 25x^3 + 36x^4 - 49x^4 + \dots \infty$
Sol. Let $S = 4 - 9x + 16x^2 - 25x^3 + 36x^4 - 49x^4 + \dots \infty$
 $-Sx = -4x + 9x^2 - 16x^3 + 25x^4 - 36x^4 + \dots \infty$
On subtraction, we get
 $S(1+x) = 4 - 5x + 7x^2 - 9x^3 + 11x^4 - 13x^5 + \dots \infty$
On subtraction, we get
 $S(1+x) = 4 - x + 2x^2 - 12x^4 + 2x^5 + \dots \infty$
 $= 4 - x + 2x^2 (1 - x + x^2 - x^{-1}) = 4 - x + \frac{2x^2}{1+x} = \frac{4 + 3x + x^3}{1+x}$
 $S = \frac{4 + 3x + x^2}{(1+x)^3}$
Ex. Evaluate $1 + 2x + 3x^2 + 4x^3 + \dots$ upto infinity, where $|x| < 1$.
Sol. Let $S = 1 + 2x + 3x^2 + 4x^3 + \dots$ (i)
 $x = x + 2x^2 + 3x^2 + 4x^3 + \dots$ (ii)
 $(i) - (ii) = (1 - x)S = 1 + x + x^2 + x^3 + \dots$ (ii)

or
$$S = \frac{1}{(1-x)^2}$$

SIGMA NOTATIONS (Σ) Properties

(a)
$$\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$
 (b) $\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$

(c)
$$\sum_{r=1}^{n} k = nk$$
; where k is a constant.

Sequence and Series

(JE	E MAIN & ADVANCED	(<u>Maths</u>
Some	Results	
	(a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$ (sum of the first n natural numbers)	
	(b) $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$ (sum of the squares of the first n natural numbers)	
	(c) $\sum_{r=1}^{n} r^{3} = \frac{n^{2}(n+1)^{2}}{4} = \left[\sum_{r=1}^{n} r\right]^{2} \text{ (sum of the cubes of the first n natural numbers)}$	
	(d) $\sum_{r=1}^{n} r^{4} = \frac{n}{30} (n+1)(2n+1)(3n^{2}+3n-1)$	
	(e) $\sum_{r=1}^{n} (2r-1) = n^2$ (sum of first n odd natural numbers)	
	(f) $\sum_{r=1}^{n} 2r = n(n+1)$ (sum of first n even natural numbers)	
_	KEY POINTS	
	If n th term of a sequence is given by $T_n = an^3 + bn^2 + cn + d$ where a, b, c, d are constants, then sum of n terms $S_n = ST_n = aSn^3 + bSn^2 + cSn + Sd$	
D	Find the sum of the series to a terms where concreditors is $2n + 1$	
Ex.	Find the sum of the series to n terms whose general term is $2n + 1$.	
Sol.	$\Sigma_{n} = \Sigma T_{n} = \Sigma (2n+1)$	
	$=2\Sigma n + \Sigma 1$	
	$=\frac{2(n+1)n}{2}+n=n^2+2n$	
Ex.	Sum up to 16 terms of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ is	
	1 1+3 1+3+5	
	$(n(n+1))^2$ $n^2(n+1)^2$	
	$1^{3} + 2^{3} + 3^{3} + \dots + n^{3}$ $\frac{1}{2}$ $\frac{n}{4}$ $(n+1)^{2}$ n^{2} n 1	
Sol.	$t_n = \frac{1}{1+3+5+\dots(2n-1)} = \frac{1}{n(2+2)(n-1)} = \frac{1}{n^2} = \frac{1}{4} = \frac{1}{4} + \frac{1}{2} + \frac{1}{4}$	
	$t_n = \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{1 + 3 + 5 + \dots (2n - 1)} = \frac{\left\{\frac{n(n + 1)}{2}\right\}^2}{\frac{n}{2}\left\{2 + 2(n - 1)\right\}} = \frac{\frac{n^2(n + 1)^2}{4}}{n^2} = \frac{(n + 1)^2}{4} = \frac{n^2}{4} + \frac{n}{2} + \frac{1}{4}$	
	$\therefore S_n = \Sigma t_n = \frac{1}{4} \Sigma n^2 + \frac{1}{2} \Sigma n + \frac{1}{4} \Sigma 1 = \frac{1}{4} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \cdot \frac{n(n+1)}{2} + \frac{1}{4} \cdot n$	
	$\cdots S_n - 2u_n - \frac{1}{4}2u + \frac{1}{2}2u + \frac{1}{4}2u = \frac{1}{4} \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4}u$	
	$\therefore \qquad S_{16} = \frac{16.17.33}{24} + \frac{16.17}{4} + \frac{16}{4} = 446$	
	24 4 4	
	\mathbf{T}^{i} is a second	
Ex.	Find the value of the expression $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$	
	$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{i} j$	
Sol.	$\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}j$	
	$=\sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{1}{2} \left[\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i \right]$	
	$=\frac{1}{2}\left[\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}\right]$	
	$= \frac{n(n+1)}{12} [2n+1+3] = \frac{n(n+1)(n+2)}{6}.$	
	12 6	

Sequence and Series

Maths

METHOD OF DIFFERENCE

Some times the nth term of a sequence or a series can not be determined by the method, we have discussed earlier.

So we compute the difference between the successive terms of given sequence for obtained the nth terms. If $T_1, T_2, T_3, \dots, T_n$ are the terms of a sequence then some times the terms $T_2 - T_1, T_3 - T_3, \dots, T_n$ constitute an AP/GP. nth term of the series is determined & the sum to n terms of the sequence can easily be obtained.

Method of Difference for Finding nth Term

Let u_1, u_2, u_3, \dots be a sequence, such that $u_2 - u_1, u_3 - u_2, \dots$ is either an A.P. or a G.P. then nth term u_n of this sequence is obtained as follows

 $S = u_1 + u_2 + u_3 + \dots + u_n$(i) MARIAL $u_1 + u_2 + \dots + u_{n-1}$ + u_n(ii) S =(i) – (ii) \Rightarrow $u_n = u_1 + (u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1})$

Where the series $(u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1})$ is

either in A.P. or in G.P. then we can find u.

So sum of series $S = \sum_{r=1}^{n} u_r$

Case - I

If difference series are in A.P., then **(a)**

Let $T_n = an^2 + bn + c$, where a, b, c are constant

If difference of difference series are in A.P. **(b)**

Let $T_n = an^3 + bn^2 + cn + d$, where a, b, c, d are constant

Case - II

Sol.

(a) If difference are in G.P., then

Let $T_n = ar^n + b$, where r is common ratio & a, b are constant

If difference of difference are in G.P., then **(b)**

Let $T_n = ar^n + bn + c$, where r is common ratio & a, b, c are constant

Determine constant by putting n = 1, 2, 3 n and putting the value of T₁, T₂, T₃, and sum of series (S_n) = $\sum T_n$

Find the sum to n-terms $3 + 7 + 13 + 21 + \dots$ Ex.

Let
$$S=3+7+13+21+.....+T_n$$
(i)
 $S=3+7+13+....+T_{n-1}+T_n$ (ii)
(i) - (ii)
 $\Rightarrow T_n=3+4+6+8+....+(T_n-T_{n-1})$
 $=3+\frac{n-1}{2} [8+(n-2)2]$
 $=3+(n-1)(n+2)$
 $=n^2+n+1$
Hence $S=\Sigma (n^2+n+1)$
 $=\Sigma n^2+\Sigma n+\Sigma 1$
 $=\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}+n = \frac{n}{3} (n^2+3n+5)$

Sequence and Series

Maths

Method of Difference for Finding s_n

If possible express rth term as difference of two terms as $t_r = \pm (f(r) - f(r \pm 1))$. This can be explained with the help of examples given below.

$$t_{1} = f(1) - f(0),$$

$$t_{2} = f(2) - f(1),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$t_{n} = f(n) - f(n-1)$$

$$S_{n} = f(n) - f(0)$$

Find the sum of n-terms of the series $1.2 + 2.3 + 3.4 + \dots$ Ex.

Sol. Let
$$T_r$$
 be the general term of the series

So
$$T_r = r(r+1)$$
.

⇒

To express $t_r = f(r) - f(r-1)$ multiply and divide t_r by [(r+2) - (r-1)]

So
$$T_r = \frac{r}{3} (r+1) [(r+2)-(r-1)]$$

$$S_{n} = f(n) - f(0)$$
sum of n-terms of the series $1.2 + 2.3 + 3.4 + \dots$
the general term of the series $T_{r} = r(r + 1)$.
ss $t_{r} = f(r) - f(r-1)$ multiply and divide t_{r} by $[(r + 2) - (r - 1)]$
 $T_{r} = \frac{r}{3} (r + 1) [(r + 2) - (r - 1)]$
 $= \frac{1}{3} [r(r + 1) (r + 2) - (r - 1) r(r + 1)].$
 $) = \frac{1}{3} r(r + 1) (r + 2)$
 $T_{r} = [f(r) - f(r - 1)].$
 $\sum_{r=1}^{n} T_{r} = T_{1} + T_{2} + T_{3} + \dots$
 $T_{r} = \frac{1}{2} [1, 2, 3 - 0]$

Let
$$f(r) = \frac{1}{3} r (r+1) (r+2)$$

So $T_r = [f(r) - f(r-1)].$

Now
$$S = \sum_{r=1}^{n} T_r = T_1 + T_2 + T_3 + \dots$$

 $T_1 = \frac{1}{3} [1, 2, 3 - 0]$

$$T_{3} = \frac{1}{3} [2 \cdot 3 \cdot 4 - 1 \cdot 2 \cdot 3]$$

$$T_{3} = \frac{1}{3} [3 \cdot 4 \cdot 5 - 2 \cdot 3 \cdot 4]$$

$$\vdots$$

$$T_{n} = \frac{1}{3} \left[n(n+1)(n+2) - (n-1)n(n+1) \right]$$

 $S = \frac{1}{3}n(n+1)(n+2)$

Hence sum of series is f(n) - f(0).

Sequence and Series

Ex. Find the nth term and the sum of n term of the series $2 + 12 + 36 + 80 + 150 + 252 + \dots$ $S = 2 + 12 + 36 + 80 + 150 + 252 + \dots + T_{n}$ Sol. Let**(i)** $S = 2 + 12 + 36 + 80 + 150 + 252 + \dots + T_{n-1} + T_n$(ii) (i) - (ii) $T_n = 2 + 10 + 24 + 44 + 70 + 102 + \dots + (T_n - T_{n-1})$ ⇒**(iii)** $T_n = 2 + 10 + 24 + 44 + 70 + 102 + \dots + (T_{n-1} - T_{n-2}) + (T_n - T_{n-1})$(iv) (iii) – (iv) $T_n - T_{n-1} = 2 + 8 + 14 + 20 + 26 + \dots$ \Rightarrow MATRALAL $= \frac{n}{2} [4 + (n-1) 6] = n [3n-1] \implies T_n - T_{n-1} = 3n^2 - n$ general term of given series is $\sum (T_n - T_{n-1}) = \sum (3n^2 - n) = n^3 + n^2$ Hence sum of this series is $S = \sum n^{3} + \sum n^{2} = \frac{n^{2}(n+1)^{2}}{4} + \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)}{12} (3n^{2} + 7n + 2)$ $=\frac{1}{12}n(n+1)(n+2)(3n+1)$ If $\sum_{r=1}^{n} T_r = \frac{n}{8}(n+1)(n+2)(n+3)$, then find $\sum_{r=1}^{n} \frac{1}{T_r}$. Ex. $T_n = S_n - S_{n-1}$ Sol. $=\sum_{r=1}^{n}T_{r}-\sum_{r=1}^{n-1}T_{r}=\frac{n(n+1)(n+2)(n+3)}{8}-\frac{(n-1)n(n+1)(n+2)}{8}=\frac{n(n+1)(n+2)}{8}[(n+3)-(n-1)]$ $T_{n} = \frac{n(n+1)(n+2)}{8}(4) = \frac{n(n+1)(n+2)}{2}$ $\frac{1}{T_n} = \frac{2}{n(n+1)(n+2)} - \frac{(n+2) - n}{n(n+1)(n+2)} = \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}$**(i)** $V_n = \frac{1}{n(n+1)}$ Let $\frac{1}{T} = V_n - V_{n+1}$ Putting n = 1, 2, 3, ..., n $\Rightarrow \qquad \frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3} + \dots + \frac{1}{T_n} = (V_1 - V_{n+1})$

$$\Rightarrow \qquad \sum_{r=1}^{n} \frac{1}{T_r} = \frac{n^2 + 3n}{2(n+1)(n+2)}$$

Sequence and Series

152

Maths

TIPS AND TRICKS

1. Arithmetic Progression (AP)

AP is sequence whose terms increase or decrease by a fixed number. This fixed number is called the **Common Difference**. If 'a' is the first term & 'd' is the common difference, then AP can be written as

 $a, a+d, a+2d, \dots a+(n-1)d, \dots$

(a) n^{th} term of this AP $T_n = a + (n-1)d$, where $d = T_n - T_{n-1}$

(b) The sum of the first n terms : $Sn = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [a + \ell]$ where ℓ is the last term.

(c) Also nth term $T_n = S_n - S_{n-1}$

Note

- Sum of first n terms of an A.P. is of the form An² + Bn i.e. a quadratic expression in n, in such case the common difference twice the coefficient of n² i.e. 2A
- (ii) n^{th} term of an A.P. is of the form $A_n + B$ i.e. a linear expression in n, in such case the coefficient of n is the common difference of A.P. i.e. A
- (iii) Three numbers is AP can be taken as a d, a, a + d; four numbers in AP can be taken as a 3d, a d, a + d, a + 3d five numbers in AP are a 2d, a d, a + d, a + 2d & six terms in AP are a 3d, a d, a + d, a + 3d, a + 5d etc.
- (iv) If for A.P. pth term is q, q^{th} term is p, then r^{th} term is $= p + q r \& (P + q)^{th}$ term is 0.

2. Geometric Progression (GP)

GP is a sequence of numbers whose first term is non-zero & each of the succeeding terms is equal to the preceeding terms multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the **COMMON RATIO** of the series & is obtained by dividing any term by the immediately previous term.

Therefore a, ar, ar², ar³, ar⁴,....is a GP with 'a' as the first term & 'r' as common ratio.

- (a) nth term $T_n = a r^{n-1}$
- **(b)** Sum of the first n terms $S_n = \frac{a(r^n 1)}{r 1}$, if $r \neq 1$
- (c) Sum of infinite GP when $|\mathbf{r}| < 1 \& \mathbf{n} \to \infty$, $\mathbf{r}^{\mathbf{n}} \to 0 S_{\infty} = \frac{\mathbf{a}}{1-\mathbf{r}}; |\mathbf{r}| < 1$
- (d) Any 3 consecutive terms of a GP can be taken as a/r, a, ar ; any 4 consecutive terms of a GP can be taken as a/r3, a/r, ar, ar3 & so on.
- (e) If a, b, c are in $GP \Rightarrow b^2 = ac \Rightarrow loga, logb, logc, are in A.P.$

3. Harmonic Progression (HP)

A sequence is said to HP if the reciprocals of its terms are in AP. If the sequence $a_1, a_2, a_3, \dots, a_n$ is an HP then $1/a_1$, $1/a_2, \dots, 1/a_n$ is an AP & converse. Here we do not have the formula for the sum of the n terms of an HP. The general

form of a harmonic progression is
$$\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \dots, \frac{1}{a+(n-1)d}$$

Note : No term of any H.P can be zero. If a, b, c are in HP \Rightarrow b = $\frac{2ac}{a+c}$ or $\frac{a}{c} = \frac{a-b}{b-c}$

4. Means

Sequence and Series

Maths

(a) Arithmetic Mean (AM)

If three terms are in AP then the middle term is called the AM between the other two, so if a, b, c are in AP, b is AM of a & c.

n-Arithmetic Means Between two Numbers

If a, b are any two given numbers & a, A₁, A₂,.....A_n, b are in AP then A₁, A₂,....A_n are the n AM's between a & b, then

 $A_1 = a + d, A_2 = a + 2d, \dots, A_n = a + nd$, where $d = \frac{b-a}{n+1}$

Sum of n AM's inserted between a & b is equal to n times the single AM between a & b i.e. $\sum_{r=1}^{n} A_r = nA$ where A is Note 2020-2

the single AM between a & b.

Geometric Mean (GM) **(b)**

If a, b, c are in GP, b is the GM between a & c, $b^2 = ac$, therefore $b = \sqrt{ac}$

n-Geometric Means Between two Numbers

If a, b are two given positive numbers & a, G_1, G_2, \dots, G_n , b are in GP then $G_1, G_2, G_3, \dots, G_n$ are n GMs between a & b. $G_1 = ar, G_2 = ar_2, \dots, G_n = ar_n$, where $r = (b/a)1^{n+1}$

Note The product of n GMs between a & b i.e.
$$\prod_{r=1}^{n} G_r = (G)^n$$
 where G is the single GM between a & b

(c) Harmonic Mean (HM)

If a, b, c are in HP, then b is HM between a & c, then b =

Important Note

(i) If A, G, H are respectively AM, GM, HM between two positive number a & b then

(ii) Let a_1, a_2, \dots, a_n be n positive real numbers, then we define their arithmetic mean (A), geometric mean (G) and

harmonic mean (H) as A =
$$\frac{a_1 + a_2 + \dots + a_n}{n}$$
, G = $(a_1, a_2, \dots, a_n)^{1/n}$ and H = $\frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n}\right)}$

It can be shown that $A \ge G \ge H$. Moreover equality holds at either place if and only if $a_1 = a_2 = \dots = a_n$

5. Arithmetico – Geometric Series

Sequence and Series

Maths

Sum of First n terms of an Arithmetico-Geometric Series

Let
$$S_n = a + (a+d)r + (a+2d)r^2 + \dots + [a+(n-1)d]r^{n-1}$$
 then $S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}, r \neq 1$

Sum to Infinity

If
$$|\mathbf{r}| < 1$$
 & $\mathbf{n} \to \infty$ then $\lim_{n \to \infty} \mathbf{r}^n = 0 \Longrightarrow \mathbf{S}_{\infty} = \frac{\mathbf{a}}{1 - \mathbf{r}} + \frac{\mathbf{dr}}{(1 - \mathbf{r})^2}$

6. Sigma Notations Theorems

(a)
$$\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$
 (b) $\sum_{r=1}^{n} ka_r = k \sum_{r=1}^{n} a_r$

(c)
$$\sum_{r=1}^{n} k = nk$$
; where k is a constant.

7. Results

- (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$ (sum of the first n natural numbers)
- (b) $\sum_{r=1}^{-n} r^2 = \frac{n(n+1)(2n+1)}{6}$ (sum of the squares of the first n natural numbers)

(c)
$$\sum_{r=1}^{n} r^{3} = \frac{n^{2} (n+1)^{2}}{4} = \left[\sum_{r=1}^{n} r\right]^{2}$$
 (sum of the cubes of the first n natural numbers)

(d)
$$\sum_{r=1}^{n} r^4 = \frac{n}{30} (n+1) (2n+1) (3n^2 + 3n - 1)$$

8. Method of Difference

Some times the nth term of a sequence or a series can not be determined by the method, we have discussed earlier. So we compute the difference between the successive terms of given sequence for obtained the nth terms. If $T_1, T_2, T_3, \dots, T_n$ are the terms of a sequence then some times the terms $T_2 - T_1, T_3 - T_2, \dots$ constitute an AP/GP. nth term of the series is determined & the sum to n terms of the sequence can easily be obtained.