2. ION TRENDS IN PERIODIC TABLE & FORMULA SOLUTIONS

TEACHING TASK

JEE MAINS LEVEL QUESTIONS

1.An element with atomic number 19 forms a monovalent ion. What is its charge?

A) +1

B) -1

C) +2

D) -2

Solution: Atomic number 19 corresponds to potassium (K).

Potassium is an alkali metal (Group 1) with 1 valence electron.

To achieve stability, it loses 1 electron, forming a monovalent cation (K^+) with a +1 charge.

Answer:A

2. The electron configuration of a tripositive ion (X^{3+}) is 2, 8. What is the atomic number of X?

A) 11

B) 13

C) 15

D) 17

Solution: Given:

The tripositive ion (X^{3+}) has an electron configuration of 2, 8 (total of 10 electrons).

Since the ion has a +3 charge, it means the neutral atom lost 3 electrons.

Steps:Electrons in neutral atom (X):

The ion has 10 electrons (2 + 8).

Since it lost 3 electrons, the neutral atom must have had:

Electrons in neutral atom = 10 + 3 = 13

Atomic number (Z):

In a neutral atom, the number of electrons equals the number of protons, which is the atomic number (Z).

Therefore, the atomic number of X is 13.

Identify the element:

The element with atomic number 13 is aluminum (Al).

Aluminum typically forms a +3 ion (Al³+) by losing 3 electrons, matching the given configuration (2, 8).

Answer:B

3. Which element forms a dipositive ion with the same electron configuration as neon?

A) Lithium (Li) B) Magnesium (Mg) C) Aluminum (Al) D) Sulfur (S)

Solution: Explanation:

Neon's electron configuration:

Neon (Ne, atomic number 10) has the electron configuration 2, 8 (a stable octet).

Dipositive ion (X^{2+}) with the same configuration as Ne:

A +2 ion means the neutral atom lost 2 electrons.

To match Ne's configuration (2, 8), the ion must have 10 electrons.

Therefore, the neutral atom must have had:

Electrons in neutral atom $\} = 10 + 2 = 12$

The element with atomic number 12 is magnesium (Mg).

Answer:B

- 4.The symbol Sn²⁺ represents a:
- A) Monovalent tin ion B) Divalent tin ion
- C) Trivalent lead ion D) Tetravalent antimony ion

Solution: Symbol Interpretation:

Sn is the chemical symbol for tin (from its Latin name Stannum).

The ²⁺ superscript indicates a +2 charge, meaning the ion has lost 2 electrons.

Terminology:

A divalent ion is one with a +2 or -2 charge.

Since Sn²⁺ has a +2 charge, it is correctly called a divalent tin ion.

Answer:B

5.A trinegative ion has 10 electrons. What is the atomic number of its parent atom?

A) 7 B) 9 C) 13 D) 15

Solution: Given:

A trinegative ion (X³-) has 10 electrons.

The -3 charge indicates the atom gained 3 electrons to form this ion.

Steps:Electrons in neutral atom (X):

The ion has 10 electrons.

Since it gained 3 electrons, the neutral atom must have had:

Electrons in neutral atom = 10 - 3 = 7

Atomic number (Z):

In a neutral atom, the number of electrons equals the number of protons (atomic number).

Therefore, the atomic number of the parent atom is 7.

Identify the element:

The element with atomic number 7 is nitrogen (N).

Nitrogen commonly forms a N³⁻ ion (though this is rare; it's more stable when forming covalent compounds).

Answer:A

6. Which compound contains a divalent electropositive ion and a monovalent electronegative ion?

A) NaCl

Solution: Divalent electropositive ion: A +2 charged metal ion (loses 2 electrons).

Monovalent electronegative ion: A -1 charged non-metal ion (gains 1 electron).

Magnesium (Mg) loses 2 electrons to form Mg²? (divalent).

Chlorine (Cl) gains 1 electron to form Cl? (monovalent).

The compound MgCl₂ balances charges:

$$Mg^{2+} + 2Cl^{-} \rightarrow MgCl_{2}$$

Answer:B

7.The formula of aluminum sulfate is $Al_2(SO_4)_3$. What is the charge on the sulfate ion (SO_4) ?

A) 1-

Solution: Identify the charge on aluminum (Al)

Aluminum (Al) is in Group 13 and forms a +3 ion (Al3+).

Step 2: Balance the charges in $Al_2(SO_4)_3$

The formula shows 2 Al³⁺ ions and 3 SO₄ ions.

Total positive charge from aluminum:

$$[2 (+3) = +6]$$

Total negative charge from sulfate ions must balance this:

 $[3 \{Charge on SO4\} = -6]$

Therefore, the charge on one sulfate ion (SO4) is:-6/3 = -2

Answer:B

8.An element X forms a tripositive ion with 18 electrons. Identify X.

A) Iron (Fe) B) Chromium (Cr) C) Scandium (Sc) D) Gallium (Ga)

Solution: Given:

Tripositive ion (X^{3+}) has 18 electrons.

Since the ion has a +3 charge, the neutral atom lost 3 electrons.

Step 1: Determine the atomic number (Z) of X

The ion has 18 electrons.

The neutral atom originally had: Electrons in neutral atom= 18 + 3 = 21

Therefore, the atomic number (Z) of X is 21.

The element with atomic number 21 is scandium (Sc).

Answer:C

9. Which of the following is a trivalent anion?

A) Nitride (N³⁻)

B) Oxide (O²⁻) C) Fluoride (F⁻) D) Chloride (Cl⁻)

Solution: Trivalent anion means an ion with a -3 charge, formed by gaining 3 electrons.

Nitrogen (N) has 5 valence electrons and gains 3 electrons to achieve a stable octet, forming the nitride ion (N³⁻).

Answer:A

10. The formula of ferric oxide is Fe₂O₃. What is the charge on the iron ion in this compound?

A) + 1

B) +2

C) +3

D) +4

Solution: Oxygen (O) in compounds typically has a -2 oxidation state

 Fe_2O_3

2Fe + 3(-2) = 0

2Fe = 6

Fe = 6/2 = 3

Answer:C

11.A metal M forms a chloride with the formula MCl₃. What is the formula of its phosphate?

A) $M_3(PO_4)_2$

B) MPO_4 C) $M_2(PO_4)_3$

D) M_3PO_4

Solution: To determine the formula of the phosphate of metal M, let's analyze the given information step-by-step:

Step 1: Determine the valency of metal M from its chloride formula (MCl₃₎ Chlorine (Cl) has a -1 valency (as chloride ion, Cl).

The formula MCl_3 is neutral, so the total negative charge from Cl^2 is: [3 (-1) = -3] To balance this, the metal ion M must have a +3 valency (M³⁺).

Step 2: Determine the formula of the phosphate compound

The phosphate ion (PO4³⁻) has a -3 valency (standard for phosphate).

Since M³⁺and PO4³⁻ have equal but opposite charges, they combine in a 1:1 ratio to form a neutral compound.

Step 3: Write the formula

The formula is simply MPO₄, as one M³⁺ balances one PO4³⁻.

Solution:B

12.If the formula of a metal carbonate is $M_2(CO_3)_3$, what is the formula of its nitrate? A) MNO_3 B) $M(NO_3)_2$ C) $M(NO_3)_3$ D) $M_2(NO_3)_3$

Solution:Step 1: Determine the valency of metal M from its carbonate formula $(M_2(CO_3)_3)$

The carbonate ion (CO3²-) has a -2 valency.

The formula M2(CO3)3 contains 3 carbonate ions, contributing a total negative charge of:3 (-2) = -6

To balance this, the 2 metal ions (M) must provide a total positive charge of +6, meaning each M has a +3 valency (M³+).

Step 2: Determine the formula of the nitrate compound

The nitrate ion (NO_3^-) has a -1 valency.

Since M³⁺ needs to balance three NO₃⁻ ions to achieve neutrality, the formula is:

$$M^{3+} + 3NO_3^- \rightarrow M(NO_3)_3$$

Step 3: Verify the formula

M(NO₃)₃ ensures charge balance:

$$(+3) + 3(-1) = 0$$

Answer:C

13.An element exhibits variable valency of +2 and +3. Its sulfate in the +2 state is MSO₄. What is the formula of its oxide in the +3 state?

Solution: Given:

The element M has variable valency: +2 and +3.

In the +2 state, its sulfate is MSO₄ (consistent with M²⁺ and SO4²⁻).

Step 1: Determine the formula of the oxide in the +3 state

Oxygen (O) has a -2 valency (as oxide ion, O²).

In the +3 state, the ion is M^{3+} .

To balance the charges:

M³+ requires O²- in a ratio that makes the compound neutral.

The least common multiple of +3 and -2 is 6, so: $2M^{3+} + 3O^{2-} \rightarrow M_2O_3$

Step 2: Verify the formula

$$(2 (+3) + 3 (-2) = 6 - 6 = 0$$

Answer:B

14. The formula of potassium dichromate is $K_2Cr_2O_7$. What is the charge on the dichromate ion (Cr_2O_7) ?

Solution: Identify the charge on potassium (K)

Potassium (K) is an alkali metal (Group 1) and forms a +1 ion (K $^+$).

Step 2: Balance the charges in K₂Cr₂O₇

The formula contains 2 K^+ ions, contributing a total positive charge of: [2 (+1) = +2]

The dichromate ion (Cr₂O₇) must balance this with an equal negative charge.

Therefore, the charge on (Cr_2O_7) is -2.

Answer:B

15.A compound has the formula X(H₂PO₄)₂. What is the formula of its sulfite?

A) XSO_3 B) X_2SO_3 C) $X(SO_3)_2$ D) $X_3(SO_3)_2$

Solution: Step 1: Determine the valency of X from X(H₂PO₄)₂

The dihydrogen phosphate ion H₂PO₄-1 has a -1 charge.

Since there are two $H_2PO_4^{-1}$ ions in the compound, the total negative charge is: 2(-1) = -2

To balance this, X must have a +2 valency (X^{2+}) .

Step 2: Determine the formula of the sulfite

The sulfite ion (SO₃²) has a -2 charge.

Since X^{2+} and SO_3^{2-} have equal but opposite charges, they combine in a 1:1 ratio to form a neutral compound.

Step 3: Write the formula

The formula is XSO_3 , where one X^{2+} balances one SO_3^{2-} .

Answer:A

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

- 1. Which of the following statements about ions are correct?
- A) Cations are formed by loss of electrons
- B) Anions are smaller than their parent atoms
- C) Na⁺has the same number of electrons as Ne
- D) Cl has more protons than Cl atom

Solution: A) Cations are formed by loss of electrons (Correct)

Cations are positively charged ions formed when an atom loses electrons.

Example: Na \rightarrow Na⁺ + e⁻

B) Anions are smaller than their parent atoms (Incorrect)

Anions are larger than their parent atoms because extra electrons increase electron electron repulsion, expanding the electron cloud.

Example: Cl (smaller) \rightarrow Cl? (larger).

C) Na⁺ has the same number of electrons as Ne (Correct)

Na (11 electrons) \rightarrow Na⁺ (loses 1 electron \rightarrow 10 electrons).

Neon (Ne) also has 10 electrons. Thus, Na⁺ is isoelectronic with Ne.

D) Cl- has more protons than Cl atom (InCorrect)

Cl has the same number of protons as a Cl atom (17 protons).

However, Cl⁻ has more electrons (18) than Cl (17).

Answer:A,C

2. Which of the following elements commonly exhibit variable valency?

A) Iron (Fe) B) Copper (Cu) C) Magnesium (Mg) D) Sulfur (S)

Solution: A) Iron (Fe) (Variable valency)

Shows +2 (ferrous) and +3 (ferric) states.

Examples:

FeCl₂ (Iron(II) chloride, Fe²⁺)

FeCl₃ (Iron(III) chloride, Fe³⁺)

B) Copper (Cu) (Variable valency)

Shows +1 (cuprous) and +2 (cupric) states.

Examples:Cu₂O (Copper(I) oxide, Cu⁺)

CuO (Copper(II) oxide, Cu²⁺)

C) Magnesium (Mg) (Fixed valency)

Always forms +2 ions (e.g., MgCl₂, MgO).

D) Sulfur (S) (Mostly fixed valency in common compounds)

Typically forms -2 (sulfide, S²-) or +6 (sulfate, SO₄²-).

Though sulfur can show other states (e.g., +4 in SO_2), they are less common in stable compounds.

Answer:A,B

- 3. Identify correct chemical formulas:
- A) Potassium permanganate KMnO₄
- B) Sodium thiosulfate Na₂S₂O₃
- C) Calcium phosphate Ca₃(PO₄)₂
- D) Ammonium dichromate (NH₄)₂CrO₄

Solution:A) Potassium permanganate – KMnO₄ (Correct)

 K^+ (potassium ion) + MnO_4^- (permanganate ion) $\rightarrow KMnO_4^-$.

- B) Sodium thiosulfate Na₂S₂O₃ (Correct)
- 2 Na⁺ (sodium ions) + $S_2O_3^{2-}$ (thiosulfate ion) $\rightarrow Na_2S_2O_3$.

Used in iodometric titrations and photography.

- C) Calcium phosphate Ca₃(PO₄)₂ (Correct)
- 3 Ca²⁺ (calcium ions) + 2 PO₄³⁻ (phosphate ions) \rightarrow Ca₃(PO₄)₂.
- D) Ammonium dichromate (NH₄)₂CrO₄ (Incorrect)

The correct formula is $(NH_4)_2Cr_2O_7$ (ammonium dichromate).

(NH₄)₂CrO₄ is ammonium chromate, a different compound.

Answer: A, B, C

Assertion and Reason Type:

- A) Both Assertion and Reason are true, and Reason is the correct explanation for Assertion.
- B) Both Assertion and Reason are true, but Reason is NOT the correct explanation for Assertion.
- C) Assertion is true, but Reason is false.
- D) Assertion is false, but Reason is true.
- 4. Assertion: Sodium (Na) forms a +1 ion (Na⁺) by losing one electron.

Reason: Alkali metals in Group 1 lose one electron to achieve a noble gas configuration.

Solution:

Assertion (True): Sodium (Na, atomic number 11) forms a +1 ion (Na⁺) by losing its single valence electron.

Example: $Na \rightarrow Na^+ + e^-$

Reason (True & Correct Explanation):

Sodium is an alkali metal (Group 1) with 1 valence electron.

By losing this electron, it achieves a stable noble gas configuration (neon, 2,8).

This explains why sodium forms a + 1 ion.

Answer:A

5.Assertion: The sulfate ion (SO₄²⁻) can form ionic compounds with both monovalent (e.g., Na⁺) and divalent (e.g., Ca²⁺) cations.

Reason: Polyatomic ions like SO₄²⁻ retain their charge regardless of the cation they combine with.

Solution: The sulfate ion (SO42-) forms ionic compounds with:

Monovalent cations (e.g., $Na^+ \rightarrow Na_2SO_4$).

Divalent cations (e.g., $Ca^{2+} \rightarrow CaSO_4$).

The formulas adjust to balance charges (e.g., 2 Na⁺ for 1 SO4²⁻, but 1 Ca²⁺ for 1 SO4²⁻). Reason (True & Correct Explanation):

Polyatomic ions (like SO42-) retain their fixed charge regardless of the cation.

This allows them to combine with cations of different valencies while maintaining charge neutrality.

Answer:A

6.Assertion: Transition metals like iron (Fe) can form both Fe²⁺ and Fe³⁺ ions.

Reason: Transition metals exhibit variable valency due to the involvement of

electrons from both the outermost and penultimate shells.

Solution: Assertion (True):

Transition metals like iron (Fe) commonly form multiple ions (e.g., Fe²⁺ and Fe³⁺).

Examples: FeCl₂ (Iron(II) chloride, Fe²⁺)

FeCl₃ (Iron(III) chloride, Fe³⁺)

Reason (True & Correct Explanation):

Transition metals exhibit variable valency because:

They can lose electrons from both the outermost and penultimate (d-subshell) shells.

The small energy difference between 4s and 3d orbitals allows multiple oxidation states.

For iron: Fe²⁺: Loses two 4s electrons \rightarrow [Ar] 3d6.

Fe³⁺: Loses two 4s and one 3d electron \rightarrow [Ar] 3d5.

Answer:A

Statement Type:

7. Solution: Statement I (Correct):

Sodium (Na) forms a +1 ion (Na⁺) by losing its single valence electron.

Statement II (Correct & Explanation):

Sodium (Group 1) has 1 valence electron (configuration: 2,8,1).

By losing this electron, it achieves a stable octet configuration (2,8, like neon).

This explains why sodium forms a + 1 ion.

Answer:1

8. Solution: Statement I (Correct): The carbonate ion (CO₃²-) forms compounds with:

Monovalent cations (e.g., $\mathrm{Na^{\scriptscriptstyle +}} \rightarrow \mathrm{Na_2CO_3}$).

Divalent cations (e.g., $Ca^{2+} \rightarrow CaCO_{2}$).

The formulas adjust to balance charges (e.g., 2 Na⁺ for 1 CO₃²⁻, but 1 Ca²⁺ for 1 CO3²⁻).

Statement II (Correct & Explanation):

Polyatomic ions (like CO₃²) behave as single charged units in reactions.

Their fixed charge allows them to combine with cations of different valencies while maintaining charge neutrality.

Answer: 1

9.Statement I (Correct): $FeCl_3$ is correctly named iron(III) chloride because the iron ion has a +3 oxidation state in this compound.

Statement II (Correct & Explanation):Roman numerals in transition metal compound names indicate the oxidation state of the metal ion.

This explains why we use (III) in iron(III) chloride - it specifies Fe³⁺ as opposed to Fe²⁺

(which would be iron(II) chloride).

Answer:1

Comprehension Type:

Comprehension - I

- 10. What determines the positive valency of an atom?
- a) Number of electrons gained b) Number of protons lost
- c) Number of electrons lost d) Number of neutrons lost

Solution:Positive valency is determined by how many electrons an atom loses to form a cation.

Answer:C

- 11. Which of the following is NOT an example of an electropositive ion?
- a) Na⁺ b) C
 - b) Cl⁻
- c) Ca²⁺
- d) Al3+

Solution: Cl is a chloride ion (an anion), not an electropositive ion. Na^+ , Ca^{2^+} , and Al^{3^+} are cations.

Answer:b

- 12. What is another name for an electropositive ion?
- a) Anion
- b) Cation
- c) Neutral atom
- d) Molecule

Solution: Electropositive ions are positively charged and are called cations.

Answer:b

- 13. Why do atoms form electropositive ions?
- a) To gain more protons

- b) To achieve stability
- c) To increase their neutron count
- d) To become negatively charged

Solution: Atoms lose electrons to attain a stable electron configuration (usually an octet).

Answer:b

Comprehension - II

- 14. Which of the following elements always shows the same valency in its compounds?
- a) Iron (Fe) b) Copper (Cu) c) Sodium (Na) d) Lead (Pb)

Solution:Sodium (Na) is an alkali metal (Group 1) and always shows a valency of +1 in all its compounds

Answer:c

- 15. What is variable valency?
- a) The ability of an element to gain different numbers of electrons
- b) The ability of an element to lose different numbers of electrons, forming ions with different charges
- c) The ability of an element to change its atomic number
- d) The ability of an element to form only one type of ion

Solution: Variable valency refers to an element's capacity to form ions with different charges by losing varying numbers of electrons

Answer:b

- 16. Which of the following is an example of a metal that exhibits variable valency?
- a) Magnesium (Mg)
- b) Calcium (Ca)
- c) Iron (Fe)

(7th Class)

Chemistry: Ion Trends in the Periodic Table & Formula

d) Aluminum (Al)

Solution:Iron shows variable valency (+2 in FeCl2, +3 in FeCl3). Other options (Mg, Ca, Al) have fixed valencies.

Answer:C

- 17. Why do some metals show variable valency?
- a) Because they can lose electrons from different energy levels
- b) Because they can gain protons from other atoms
- c) Because they always form the same ion in every compound
- d) Because they are nonmetals

Solution:Transition metals like iron can lose electrons from both outer and inner (d) subshells, enabling multiple oxidation states.

Answer:a

Integer type:

18. Charge on magnesium ion: ____

Solution: Magnesium (Mg) is in Group 2 of the periodic table and has 2 valence electrons.

To achieve a stable octet (like neon), it loses 2 electrons, forming the Mg²⁺ ion.

Answer:2

19. Valency of chromate ion (CrO₄²): _____

Solution: Chromate ion formula: CrO42-

The superscript "2-" indicates its valency

Answer:-2

20. Net charge on trioxalatoaluminate(III) ion [Al(C₂O₄)₃]³⁻

Solution: The Roman numeral (III) confirms aluminum's +3 oxidation state.

The 3- net charge balances the contributions from Al³⁺ and the three oxalate ligands.

Answer:-3

Matrix Matching Type:

21. Column-I (Compound Names)

- A) Ferrous sulfate
- B) Potassium dichromate
- C) Ammonium hydroxide
- D) Sodium nitroprusside
- E) Cuprous oxide

Column-II (Chemical Formulas)

- 1) $K_2Cr_2O_7$
- 2) FeSO₄
- 3) Na₂[Fe(CN)₅NO]
- 4) NH₄OH
- 5) Cu₂O

Solution:

- A) Ferrous sulfate \rightarrow 2) FeSO₄
- B) Potassium dichromate $\rightarrow 1$) $K_2Cr_2O_7$
- C) Ammonium hydroxide \rightarrow 4) NH₄OH
- D) Sodium nitroprusside \rightarrow 3) Na₂[Fe(CN)₅NO]
- E) Cuprous oxide \rightarrow 5) Cu₂O

Answer: A-2 , B- 1, C-4 , D-3

LEARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

1. Which group in the periodic table contains elements that typically form divalent electropositive ions?

A) Group 1 B) Group 2 C) Group 16 D) Group 17

Solution: Group 2 elements (Alkaline Earth Metals):

Include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).

Have 2 valence electrons and lose both to form divalent cations (M^{2+}) .

Answer:B

2. How many electrons are present in a hydroxide ion (OH-)?

A) 9 B) 10 C) 11 D) 12

Solution: Neutral Oxygen (O) Atom:

Atomic number = $8 \rightarrow 8$ protons + 8 electrons.

Neutral Hydrogen (H) Atom:

Atomic number = $1 \rightarrow 1$ proton + 1 electron.

Total Electrons in Neutral OH Group:

8 (O) + 1 (H) = 9electrons

Hydroxide Ion (OH-):

Gains 1 extra electron (hence the -1 charge).

Total electrons =

9 {neutral OH} + 1{extra} = 10electrons

Answer:B

3. Which of the following ions is not dipositive?

A) Zn²⁺ B) Cu²⁺ C) Fe³⁺ D) Ca²⁺

Solution:Fe³⁺ is tripositive, while the others (Zn²⁺, Cu²⁺, Ca²⁺) are dipositive.

Answer:C

4. Which element, when forming a tripositive ion, would have the same electron configuration as argon?

A) Scandium (Sc) B) Aluminum (Al) C) Phosphorus (P) D) Iron (Fe)

Solution: Argon's Electron Configuration:

Argon (Ar, atomic number 18) has the stable configuration:

[1s^2 2s^2 2p^6 3s^2 3p^6]

Tripositive Ion (X³⁺) Matching Argon's Configuration:

The ion must have 18 electrons (like Ar).

For a +3 ion, the neutral atom must have:

Atomic number = 18electrons in ion + 3 lost = 21

The question likely expects scandium (Sc, Z=21), which loses 3 electrons to form Sc³⁺ with 18 electrons (same as Ar).

Answer:A

5. The tripositive ion formed by chromium (Cr) has how many electrons?

A) 21 B) 22 C) 23 D) 24

Solution: Chromium (Cr) has an atomic number of 24 (24 protons and 24 electrons in its neutral state).

A tripositive ion (Cr³⁺) means chromium loses 3 electrons.

For $Cr^{3+,}24-3=21$

Answer:A

6. Which of the following does not have a valency of 1?

A) Fluoride ion B) Sodium ion C) Nitrate ion D) Oxide ion

Solution: The oxide ion's -2 valency distinguishes it from the others.

Answer:D

7. Which of the following are tetravalent?

A) Carbonate ion B) Silicate ion C) Nitride ion D) Sulfate ion

Solution: Silicate (SiO₄⁴) is the only option where the central atom (Si) forms 4 bonds and the ion carries a -4 charge.

Answer:B

8. Number of electrons lost by aluminum to form Al³⁺ is:

Solution: Aluminum (Group 13) always loses 3 electrons to achieve stability, forming A13+

Answer:C

9.SO₄²⁻ is:

A) Sulfite ion B) Sulfide ion C) Sulfate ion D) Thiosulfate ion

Solution: SO₄²⁻ is the sulfate ion

Answer:C

10. Valency of lead in PbO and PbO₂ is:

Solution:

$$Pb + (-2) = 0$$

$$Pb = 2$$

$$PbO_{2}$$

$$Pb + 2(-2) = 0$$

$$Pb = +4$$

Answer:A

11. Valency of copper in Cu₂O and CuO is:

$$Cu_2O$$

$$2Cu + (-2) = 0 \Rightarrow Cu = 2/2 = 1$$

PbO

Solution:
$$PbO$$

$$Pb = +2$$

Answer:A

12.In the criss-cross method, the charges on ions are used to determine:

A) The molar mass B) The number of atoms C) The oxidation state D) The bond type

Solution: The criss-cross method directly gives the empirical formula (atom ratio) of an ionic compound.

Answer:B

13. Which of the following ions has the same number of electrons as neon?

A) Na⁺ B) Mg²⁺ C) F⁻ D) All of the above

Solution:Na+,Mg2+, F- all are having 10 eletrons like Neon

Answer:D

14. The valency of phosphorus in PH₃ and PCl₅ is:

A) 3,5 B) 5,3 C) 2,3 D) 3,4

Solution: 3 in PH₃ (covalent bonds with 3 H atoms).

5 in PCl₅ (expands its octet using 3d orbitals).

Answer:A

15. Which of the following elements can exhibit variable valency?

A) Sodium (Na) B) Iron (Fe) C) Calcium (Ca) D) Neon (Ne)

Solution: Transition metals (like Fe) commonly show variable valency due to their partially filled d-orbitals, allowing multiple oxidation states.

Answer:B

JEE MAINS LEVEL QUESTIONS

- 1. Which of the following is a characteristic of monovalent electropositive ions?
- A) They tend to gain electrons
- B) They form negative ions
- C) They have a stable noble gas configuration
- D) They lose one electron easily

Solution: Monovalent electropositive ions are Group 1 metals (alkali metals) that easily lose 1 valence electron to form +1 cations.

Answer:D

2. What is the chemical symbol for a dipositive ion formed by an element with atomic number 12?

A) O²⁻

B) Mg²⁺

C) N³⁻

D) H+

Solution: Magnesium loses 2 valence electrons to form a Mg2+ ion

Answer:B

- 3. Which element is most likely to form a tripositive ion?
- A) Oxygen (O) B) Boron (B) C) Iron (Fe) D) Chlorine (Cl)

Solution: The element most likely to form a tripositive ion is Boron (B), as it readily loses its 3 valence electrons to achieve stability.

Answer:B

- 4. Which element, when forming a monovalent positive ion, has the same electron configuration as neon?
- A) Sodium (Na) B) Magnesium (Mg) C) Aluminum (Al) D) Potassium (K)

Solution: The only element that forms a monovalent positive ion (+1) with the same electron configuration as neon is Sodium (Na).

Answer:A

(7th Class

Chemistry : Ion Trends in the Periodic Table & Formula

- 5.In which group of the periodic table are elements most likely to form tripositive ions?
- A) Group 1 (Alkali metals) B) Group 2 (Alkaline earth metals)
- C) Group 13 (Boron group) D) Group 17 (Halogens)

Solution: Elements in Group 13 (Boron group) are the most likely to form tripositive ions (3+) because they have 3 valence electrons that they can lose.

Answer:C

6. What is the charge on the electronegative ion formed by an element in Group 16? A) 1- B) 2- C) 3- D) 4-

Solution: Group 16 elements form 2- ions when they gain electrons.

Answer:B

7.In the compound $Al_2(SO_4)_3$, what is the electropositive ion?

A) Aluminum (Al³+) B) Sulfur (S) C) Oxygen (O²-) D) None of these

Solution:InAl₂(SO₄)₃, the aluminum (Al) forms Al³⁺ ions because it loses 3 electrons to achieve stability.

Answer:A

- 8. The compound K₂CO₃ contains which electropositive ion?
- A) Potassium (K⁺) B) Carbon (C⁴⁺) C) Oxygen (O²⁻) D) None of these

Solution:In K₂CO₃(potassium carbonate), potassium (K) forms K⁺ ions because it loses 1 electron to achieve stability (Group 1 elements typically form +1 ions).

Answer:A

- 9.An anion is usually:
- A) Larger in size than its parent atom B) Smaller in size than its parent atom
- C) The same size as its parent atom D) None of the above

Solution: An anion is a negatively charged ion formed when an atom gains electrons. When extra electrons are added, electron-electron repulsion increases, causing the electron cloud to expand. An anion is Larger in size than its parent atom.

Answer:A

- 10. Which compound does not contain a bivalent electronegative ion?
- A) Calcium oxide (CaO)
- B) Sodium chloride (NaCl)
- C) Magnesium sulfide (MgS) D) Barium sulfate (BaSO₄)

Solution:Bivalent electronegative ions are negatively charged ions (anions) with a 2-charge.

Let's analyze the compounds:

- A) Calcium oxide (CaO) \rightarrow Contains O² (oxide ion), which is bivalent (2–).
- B) Sodium chloride (NaCl) \rightarrow Contains Cl (chloride ion), which is monovalent (1–). This does NOT have a bivalent ion.
- C) Magnesium sulfide (MgS) \rightarrow Contains S²⁻ (sulfide ion), which is bivalent (2–).
- D) Barium sulfate (BaSO₄) \rightarrow Contains SO₄²⁻ (sulfate ion), a polyatomic bivalent ion (2–).

Only NaCl does not contain a bivalent electronegative ion.

Answer:B

- 11. Which of the following has the highest negative valency?
- A) Nitride (N³-) B) Phosphate (PO₄³-) C) Sulfate (SO₄²-) D) Carbonate (CO₃²-)

Solution: Here are the valencies of the given ions:

- A) Nitride (N³⁻) \rightarrow -3 valency
- B) Phosphate (PO4³⁻) \rightarrow -3 valency

- C) Sulfate $(SO_4^2) \rightarrow -2$ valency
- D) Carbonate $(CO_3^2) \rightarrow -2$ valency

Comparison:

Both Nitride (N³-) and Phosphate (PO₄³-) have a -3 valency, which is higher (more negative) than the -2 valency of Sulfate and Carbonate.

A) Nitride (N³-) and B) Phosphate (PO4³-) are tied for the highest negative valency (-3). If only one option is to be selected, Nitride (N³?) is typically considered the simpler ion with the highest negative valency.

Answer:A

12. Which of the following is not a monovalent electronegative ion?

A) Fluoride (F-) B) Chloride (Cl-) C) Oxide (O2-) D) Bromide (Br-)

Solution:Oxide (O²⁻) is not monovalent because it has a -2 charge, unlike the others which are -1.

Answer:C

13Solution:(i) Aluminum nitrate-Al(NO₃)₃

(ii) Barium chloride- BaCl₂

(iii) Sodium phosphate-Na₃PO₄

Answer:C

14. The correct formula for a trivalent metal oxide is:

A) M_2O_3 B) MO_3 C) M_3O_2 D) MO

Solution: To determine the correct formula for a trivalent metal oxide, let's analyze the valencies and how they combine.

Trivalent Metal (M):

A trivalent metal has a +3 valency (M3+).

Oxide (O):

Oxygen has a -2 valency (O2-).

Formula Formation:

To balance the charges:

Metal (M^{3+}) × 2 = +6 total charge

Oxygen $(O^{2-}) \times 3 = -6$ total charge

Thus, the formula is M₂O₃ (2 metal ions + 3 oxygen ions)

Answer:A

15. If the sulfate of a metal 'M' is written as $M_2(SO_4)_3$, then its chloride will be:

A) MCl B) MCl₂ C) MCl₃ D) MCl₄

Solution: The given sulfate is $M_2(SO_4)_3$.

Sulfate ion (SO₄²-) has a 2- charge.

Metal ion M^{+3} has a3-charge

Chloride ion (Cl) has a 1- charge.

To balance M³⁺, we need 3 chloride ions (Cl⁻).

Thus, the formula for the chloride is: MCl₃.

Answer:C

16. The phosphate of a metal has the formula $M_3(PO_4)_2$. What is the valency of the metal?

A) +1 B) +2 C) +3 D) +4

Solution:Step 1: Identify the charge of the phosphate ion (PO₄)

The phosphate ion has a fixed valency of -3, written as $(PO_4)^{3-}$.

Step 2: Balance the charges in the compound $M_3(PO_4)_2$

(Chemistry : Ion Trends in the Periodic Table & Formula

The compound contains 2 phosphate ions, contributing a total negative charge of: (2) (-3) = -6).

To balance this, the 3 metal ions (M) must provide a total positive charge of +6.

Therefore, the charge per metal ion (M) is:6/3=+2

The metal 'M' has a valency of +2.

Answer:B

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

- 1. Which of the following statements is/are correct about electronegative ions?
- A) Electronegative ions have more electrons than protons due to electron gain.
- B) The size of an electronegative ion is smaller than its parent atom due to increased nuclear attraction.
- C) The stability of an electronegative ion increases with higher effective nuclear charge (Zeff).
- D) Halogens (Group 17) commonly form monovalent electronegative ions (e.g., F-, Cl-).

Solution:A) Correct→Electronegative ions (anions) form when an atom gains electrons, resulting in more electrons than protons.

Example: Cl (17 protons, 17 electrons) \rightarrow Cl (17 protons, 18 electrons).

B) Incorrect \rightarrow The size of an electronegative ion is larger than its parent atom because:

Added electrons increase electron-electron repulsion, expanding the electron cloud. Example: Cl (99 pm) \rightarrow Cl (181 pm).

C) Correct→Higher effective nuclear charge (Zeff) strengthens the attraction between the nucleus and gained electrons, stabilizing the anion.

Example: F is more stable than I because fluorine has higher Zeff.

D) Correct→Halogens (Group 17) readily gain 1 electron to form monovalent anions (e.g., F-, Cl-, Br-, I-).

Answer: A, C, D

2. The divalent electronegative ion commonly found in sulfate compounds is represented by:

A) SO_4^{2-} B) SO_3^{2-} C) $S_2O_3^{2-}$ D) SO_5^{2-} Solution: SO_4^{2-} is the most stable and widely occurring divalent sulfate ion.

Answer:A

3.In which of the following compounds does the metal exhibit a valency of 2?

A) FeCl₂ B) CuO C) SnCl D) Hg₂Cl₂

Solution: FeCl₂ (Iron(II)) and CuO (Copper(II)) contain metals with a valency of 2.

SnCl₄ has Sn(IV), and Hg₂Cl₂ has Hg(I), so they do not fit.

Answer:A,B

Assertion and Reason Type:

4. Assertion: Sodium chloride (NaCl) is a neutral compound.

Reason: The 1+ charge on sodium (Na⁺) balances the 1- charge on chloride (Cl⁻), resulting in a neutral compound

Solution: Assertion: "Sodium chloride (NaCl) is a neutral compound."

True. NaCl has no net charge because the charges of Na+ and Cl- balance each other.

Reason: The 1+ charge on sodium (Na⁺) balances the 1- charge on chloride (Cl⁻), resulting in a neutral compound.

True and Correct Explanation.

Na⁺ (+1) and Cl⁻ (-1) combine in a 1:1 ratio, making NaCl electrically neutral. Answer:A

5. Assertion: Magnesium oxide (MgO) has a 1:1 ratio of magnesium to oxygen.

Reason: Magnesium loses two electrons to form Mg²⁺, while oxygen gains two electrons to form O²⁻, balancing the charges.

Solution: Assertion: "Magnesium oxide (MgO) has a 1:1 ratio of magnesium to oxygen."

True. The chemical formula MgO confirms a 1:1 ratio of Mg to O.

Reason: "Magnesium loses two electrons to form Mg²⁺, while oxygen gains two electrons to form O²⁻, balancing the charges."

True and Correct Explanation.

Mg (Group 2) loses 2 electrons \rightarrow Mg²⁺

O (Group 16) gains 2 electrons \rightarrow O²

The 2+ and 2- charges balance perfectly, resulting in a neutral compound with a 1:1 ratio.

Answer:A

6.Assertion: Iron(III) phosphate has the chemical formula FePO₄.

Reason: The 3+ charge on iron (Fe³⁺) criss-crosses with the 3- charge on phosphate (PO₄³⁻), resulting in a neutral compound.

Solution:Assertion: "Iron(III) phosphate has the chemical formula FePO₄."

True.

 $Iron(III) = Fe^{3+}$ (ferric ion).

Phosphate = PO_4^{3-} .

The charges 3+ and 3- cancel out, giving a 1:1 ratio (FePO₄).

Reason: *"The 3+ charge on iron (Fe³+) criss-crosses with the 3- charge on phosphate (PO₄³-), resulting in a neutral compound."*

True and Correct Explanation.

The criss-cross method swaps the charges of Fe³⁺ and PO₄³⁻ to subscripts, yielding FePO₄ (neutral).

No simplification is needed since the charges are equal.

Answer:A

Comprehension Type:

Comprehension-I

- 7. What is the primary reason for good electrical conductivity in solid metals?
- A) Movement of electropositive ions

B) Mobility of electrons

C) Presence of water molecules

D) High density of the metal

Solution:In solid metals, electrons are delocalized (free to move) in a "sea of electrons" around positively charged metal ions.

When a voltage is applied, these mobile electrons carry current, making metals excellent conductors

Answer:B

Comprehension-II

- 8. Why do non-metallic elements commonly form anions?
- A) Because they lose electrons easily
- B) Due to their high electronegativity, which attracts electrons
- C) Because they have low ionization energy
- D) Due to their metallic character

Solution: Non-metals (e.g., oxygen, chlorine, sulfur) tend to gain electrons because they have high electronegativity (strong attraction for electrons).

By gaining electrons, they achieve a stable electron configuration (octet rule) and form anions (negatively charged ions).

Answer:B

Integer type:

9. The valency of the Chromium ion in $Cr_2O_7^{2-}$ is _____ Solution:

$$2Cr + 7(-2) = -2$$

$$2Cr = -2 + 14$$

$$Cr = 12/2 = +6$$

Answer:6

10. The most common valency exhibited by both Antimony (Sb) and Bismuth (Bi) in their stable compounds is _____

Solution: Group 15 Elements (Pnictogens):

Both Sb (Antimony) and Bi (Bismuth) belong to Group 15 (Nitrogen family).

Their electronic configuration ends with ns² np³, allowing them to exhibit +3 and +5 valencies.

Preferred Valency = +3 (Stability Trend):

Due to the "inert pair effect", the +3 oxidation state becomes more stable down the group (especially for Bi).

Bi almost exclusively forms +3 compounds (e.g., BiCl₃, Bi₂O₃).

Sb commonly shows +3 (e.g., $SbCl_3$, Sb_2O_3) but can also exhibit +5 (e.g., $SbCl_5$). Why Not +5?

+5 requires losing all 5 valence electrons, which becomes energetically unfavorable for heavier elements like Sb and Bi due to poor shielding by inner d/f electrons. While both +3 and +5 exist, +3 is more common and stable for Sb and Bi in most

compounds.

Answer: +3

Sulfur achieves stability by gaining _____ electrons to form a sulfide ion (S²⁻), but can also show a valency of +4 in some compounds.

Solution: Sulfur achieves stability by gaining 2 electrons to form a sulfide ion (S²?), but can also show a valency of +4 in some compounds.

Answer:2

12. How many molecules of aluminum sulfide (Al, S₃) are formed when 3 volumes of aluminum react completely with 2 volumes of sulfur vapor?

Solution: Step 1: Write the Balanced Chemical Equation

The reaction between aluminum and sulfur forms aluminum sulfide:

 $2Al + 3S \rightarrow Al_2S_3$

2 moles of Al react with 3 moles of S to produce 1 mole of Al₂S₃.

Step 2: Relate Volumes to Moles (Avogadro's Principle)

Gases at the same conditions have volumes proportional to their moles (Avogadro's Law).

Here, 3 volumes of Al = 3 moles of Al, and 2 volumes of S = 2 moles of S.

Step 3: Identify the Limiting Reagent

From the balanced equation, 2 moles Al require 3 moles S for complete reaction.

Given 3 moles Al, the required S = (3/2)(3) = 4.5moles.

But only 2 moles S are available \rightarrow Sulfur (S) is the limiting reagent.

Step 4: Calculate Moles of Al₂S₃ Formed

3 moles S produce 1 mole Al_2S_3 (from the equation).

Thus, 2 moles S produce: (2/3)(1) = 2/3 moles of Al₂S₃

Step 5: Convert Moles to Molecules

1 mole = 6.022×10^{23} molecules (Avogadro's number).

2/3 moles = $2/3 \times 6.022 \times 10^{23}$ = 4.015×10^{23} molecules

Answer:~4.02 × 10²³ molecules of Al2S3.

Matrix Matching Type:

13. Column- I

b. Potassium Permanganate (KMnO₄)

c. Cuprous Chloride (CuCl)

d. Stannic Sulfide (SnS₂)

Compound Name Charges on Ions a. Ferric Oxide (Fe₂O₃) 1) +2, -1

2) + 3, -2

Column-II

3) + 1, -1

4) + 4, -2

Solution: a. Ferric Oxide (Fe₂O₃)

Ferric (Fe^{3+}) = +3 (Iron in +3 oxidation state).

Oxide $(O^{2-}) = -2$.

Match: 2) + 3, -2.

b. Potassium Permanganate (KMnO₄)

Potassium $(K^+) = +1$.

Permanganate $(MnO_4^-) = -1$ (polyatomic ion).

Match: 3) + 1, -1.

c. Cuprous Chloride (CuCl)

Cuprous $(Cu^{+}) = +1$ (older name, but IUPAC prefers Copper(I)).

Chloride (Cl^{-}) = -1.

Correction: If the formula is CuCl, the charges are +1, -1, matching 3).

(Note: If the formula were CuCl2, it would be Cu2+,2Cl, matching 1) +2, -1.)

d. Stannic Sulfide (SnS₂)

Stannic (Sn^{4+}) = +4 (Tin in +4 oxidation state).

Sulfide (S^2) = -2.

Match: 4) +4, -2.

Final Matching:

 $a \rightarrow 2$

 $b \rightarrow 3$

 $c \rightarrow 3$ (or 1 if formula is CuCl₂)

 $d \rightarrow 4$

KEY

TEACH										
JEE MAINS LEVEL QUESTIONS										
	1	2	3	4	5	6	7	8	9	10
Α		В	В	В	Α	В	В	С	Α	С
	11	12	13	14	15					
В		С	В	В	Α	JEE ADVANCED LEVEL QUESTIONS				
	1	2	3	4	5	6	7	8	9	10
A,C		A,B	A,B,C	Α	Α	Α	1	1	1	С
-	11	12	13	14	15	16	17	18	19	20
В		В	В	С	В	С	Α	2	-2	
	21									
A-2,B-1,C-4,D-3 LEARNERS		TASK	(CUQ's)							
-,-	1	2	3			6	7	8	9	10
В		В	С	Α	Α	D	В	С	С	Α
	11	_	13							
Α		В	D	A	В	IFF MAINS	LEVEL QU	FSTIONS		
	1	2			5	6	7	8	9	10
D		В	В	A	C		A	A	A	В
U	11	12	13			16	A	A	A	ט
Α		C 12	C 13	Α	C 13	В				
A		C	C	А	C	_	עכרט ו בער	LOUECTIO	NC	
	_	_	_		_	JEE ADVANCED LEVEL QUESTIONS			40	
	1	2			. 5	6		8		
A,C,D			A,B	Α	A	Α	В	В	6	3
	11	12		13		16				
2 4.02*10 23			a-2,b-3,c-3	3,d-4						