Chemistry: Daltons Law And Grahams Law

2. DALTONS LAW AND GRAHAMS LAW

SOLUTIONS

TEACHING TASK

JEE MAINS LEVEL QUESTIONS

Grahams Law Of Diffusion

Under the same conditions the rates of diffusion of two gases are in the ratio
 1:4. The ratio of their vapour densities is

 1) 2 : 1
 2) 1 : 2
 3) 16 : 1
 4) 1 : 16

Answer:3

Solution:According to Graham's Law of Diffusion, the rate of diffusion (r) of a gas is inversely proportional to the square root of its vapour density (D) or molar mass

(M):
$$\frac{r_1}{r_2} = \sqrt{\frac{D_2}{D_1}} = \sqrt{\frac{M_2}{M_1}}$$

Given: $\frac{r_1}{r_2} = \frac{1}{4}$

Let's find the ratio of vapour densities (D): $\frac{1}{4} = \sqrt{\frac{D_2}{D_1}}$

Square both sides:

 $\frac{1}{4}^{2} = \frac{D_{2}}{D_{1}}$ $\frac{1}{16} = \frac{D_{2}}{D_{1}}$ $\frac{D_{1}}{D_{2}} = \frac{16}{1}$

2. Hydrogen diffuses six times faster than a gas 'X'. The molecular weight of 'X' is

1) 362) 723) 284) 48

Answer:2

Chemistry: Daltons Law And Grahams Law

Solution: $\frac{r_{H_2}}{r_X} = \sqrt{\frac{M_X}{M_{H_2}}}$

$$r_{H_2} = 6.r_X \Rightarrow \frac{r_{H_2}}{r_X} = 6$$

Given:
$$M_{H_2} = 2g / mol$$

Substitute into Graham's Law: $6 = \sqrt{\frac{M_x}{2}}$

Square both sides: $36 = \frac{M_x}{2}$ $M_x = 72$

3. Rate of diffusion of a gas is 720ml/minute. But the gas diffused for 20 seconds only. The volume of the gas diffused in ml is

1) 240	2) 120	3) 60	4) 30
Answer:1			

Solution:First, convert the rate to ml/second: $720ml / min = \frac{720}{60} = 12ml / sec$

Now, calculate the volume diffused in 20 seconds:

Volume=Rate×Time=12×20=240 ml

4. Assuming that at S.T.P. gas A has a density of 0.09gram per litre and gas B has a density of 1.43 gram per litre, the ratio between the rates of diffusion of A and B is

1) 1:16 2) 16:1 3) 2:1 4) 4:1

Answer:4

Solution: $D_A = 0.09$ gram per litre, $D_B = 1.43$ gram per litre

$$\frac{r_A}{r_B} = \sqrt{\frac{D_B}{D_A}}$$
$$\frac{r_A}{r_B} = \sqrt{\frac{1.43}{0.09}}$$
$$\frac{r_A}{r_B} = \sqrt{15.88} \approx 4$$

(Chemistry: Daltons Law And Grahams Law)

5. Through a narrow apparature 2 litres of H_2 diffuses in 2 hours under same conditions time required in hours for the diffusion of 1 litre of oxygen is

1) 1 2) 2 3) 3 4) 4

Answer:4

Solution:From Graham's Law, the time of diffusion (t) is directly proportional to

the square root of the molar mass (M): $\frac{t_{O_2}}{t_{H_2}} = \sqrt{\frac{M_{O_2}}{M_{H_2}}}$

Given: $M_{H_2} = 2gms$, $M_{O_2} = 32gms$

$$t_{H_2} = 2hours(for 2L) \Rightarrow Rate = \frac{2L}{2h} = 1L / h$$

For 1 L of O_2 :

$$\frac{t_{o_2}}{1} = \sqrt{\frac{32}{2}}$$
$$t_{o_2} = \sqrt{16} = 4$$
 hours

6. Two grams of H_2 diffuses in 10 minutes. The weight of O_2 that can diffuse from the same container in the same time under similar conditions is

1) 4 gm 2) 0.5gm 3) 6 gm 4) 8 gm

Answer:2

Solution: From Graham's Law of Diffusion, the rate of diffusion (r) is inversely proportional to the square root of the molar mass (M):

$$\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{H_2}}}$$

Given:

$$M_{H_2} = 2\,gms, M_{O_2} = 32\,gms$$
$$\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{32}{2}} = 4$$

This means H_2 diffuses 4 times faster than O_2 .

Now, if 2 g of $\rm H_2$ diffuses in 10 minutes, then the amount of $\rm O_2$ diffusing in the same time is:

Chemistry: Daltons Law And Grahams Law

 $AmountofO_{2} = \frac{AmountofH_{2}}{Rateratio} = \frac{2}{4} = 0.5g$

7. One litre of methane takes 20 minutes to diffuse out of a vessel. How long will it take to diffuse one litre of SO_2 through the vessel under the same conditions of temperature and pressure.

1) 40 min. 2) 24 min 3) 20min 4) 10min

Answer:1

Solution:From Graham's Law, the time of diffusion (t) is directly proportional to

the square root of the molar mass (M): $\frac{t_{SO_2}}{t_{CH_4}} = \sqrt{\frac{M_{SO_2}}{M_{_{CH_4}}}}$

Given: $M_{CH_4} = 16g / mol, M_{SO_2} = 64g / mol, t_{CH_4} = 20 \min$

 $\frac{t_{so_2}}{20} = \sqrt{\frac{64}{16}} \Rightarrow \frac{t_{so_2}}{20} = \sqrt{4} \Rightarrow \frac{t_{so_2}}{20} = 2 \Rightarrow t_{so_2} = 40 \text{ min}$

8. The density of gas "A" is four times that of another gas "B". If the molecular weight of A is M, the molecular weight of B will be

1) 2M 2) 4M 3) $\frac{M}{4}$ 4) $\frac{M}{2}$

Answer:3

Solution: $D_A = 4D, D_B = D, M_A = M, M_B = ?$

$$\sqrt{\frac{M_{A}}{M_{B}}} = \sqrt{\frac{D_{A}}{D_{B}}}$$
$$\sqrt{\frac{M}{M_{B}}} = \sqrt{\frac{4D}{D}}$$
$$\sqrt{\frac{M}{M_{B}}} = \sqrt{4}$$
$$\frac{M}{M_{B}} = 4 \Longrightarrow M_{B} = \frac{M}{4}$$

(Chemistry: Daltons Law And Grahams Law)

9. A vessel contains equal number of moles of Helium and Methane. Through a small orifice the half of gas effused out. The ratio of the number of mole of Helium and methane remaining in the vessel is

Answer:2

Solution:From Graham's Law, the effusion rate (r) is inversely proportional to the

square root of the molar mass (M): $\frac{r_{He}}{r_{CH_4}} = \sqrt{\frac{M_{CH_4}}{M_{He}}} = \sqrt{\frac{16}{4}} = 2$

This means Helium effuses twice as fast as Methane.

Let the initial moles of each gas be 1 mol.

Total gas = 2 mol.

Half effuses out = 1 mol.

Since He effuses twice as fast as CH4, the ratio of effused moles is 2:1.

Thus:He effused: $\frac{2}{3} \times 1 = \frac{2}{3}$

 CH_4 effused: $\frac{1}{3} \times 1 = \frac{1}{3}$

Remaining moles:He: $1 - \frac{2}{3} = \frac{1}{3}$

$$CH_4: 1 - \frac{1}{3} = \frac{2}{3}$$

Thus, the ratio is 1:2.

10. A uniform glass tube of 100cm length is connected to a bulb containing Hydrogen at one end and another bulb containing Oxygen at the other end at the same temperature and pressure. The two gases meet for the first time at the following distance from the oxygen end.

1) 80cm 2) 50cm 3) 20cm 4) 6.66cm

Answer:3

Soluton:This problem involves diffusion of gases in a tube. Since the tube is uniform and the gases are at the same temperature and pressure, they will diffuse towards each other at rates governed by Graham's Law of Diffusion.

Chemistry: Daltons Law And Grahams Law

25

Step 1: Understand Graham's Law

Graham's Law states that the rate of diffusion (r) of a gas is inversely proportional

to the square root of its molar mass (M): $\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{H_2}}}$

 $M_{H_2} = 2\,gms, M_{O_2} = 32\,gms$ $\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{32}{2}} = 4$

This means Hydrogen diffuses 4 times faster than Oxygen.

Step 3: Relate Diffusion Rates to Distances Covered

Let:x = distance covered by Oxygen (O_2) from its end before meeting Hydrogen.

100-x = distance covered by Hydrogen (H_2) from its end before meeting Oxygen.

Since time taken to meet is the same for both gases, and distance = rate × time, we have:

 $\frac{100-x}{x} = \frac{r_{H_2}}{r_{O_2}} = 4$ $100-x = 4x \Longrightarrow 100 = 5x \Longrightarrow x = 100 / 5 = 20 cm$

Oxygen travels 20 cm from its end before meeting Hydrogen.

Hydrogen travels 80 cm from its end before meeting Oxygen.

11. One litre of a gaseous mixture of two gases effuses in 311 seconds while 2 litres of oxygen takes 20 minutes. The vapour density of gaseous mixture containing CH_4 and H_2 is

(A) 4 (B) 4.3 (C) 3.4 (D) 5

Answer:B

Solution: Given Data

Volume of mixture effused = 1 L, Time taken = 311 s

Volume of O_2 effused = 2 L, Time taken = 20 min = 1200 s

 $r = \frac{volumeeffused}{timetaken}$

The rate of effusion (r) is given by:

Rate of mixture: $r_{mix} = \frac{1L}{311s}$

 $EdOS\text{-}Educational\ Operating\ System$

9th Class

Chemistry: Daltons Law And Grahams Law

Rate of
$$O_2: r_{o_2} = \frac{2L}{1200s} = \frac{1L}{600s}$$

Graham's Law states:
$$\frac{r_{mix}}{r_{o_2}} = \sqrt{\frac{M_{o_2}}{M_{mix}}}$$

$$\frac{\frac{1}{311}}{\frac{1}{600}} = \sqrt{\frac{32}{M_{mix}}}$$
$$\frac{\frac{600}{311}^2}{\frac{32}{M_{mix}}} = \frac{32}{M_{mix}}$$
$$M_{mix} = 32 \times (\frac{311}{600})^2 \approx 8.58$$

Relate Molar Mass to Vapour Density

Vapour Density (VD) =
$$\frac{M_{mix}}{2} = \frac{8.58}{2} \approx 4.3$$

12. Pure O_2 diffuses through an aperture in 224 second, whereas mixture of O_2 and another gas containing 80% O_2 diffuses from the same in 234 second. The molecular mass of gas will be

(A) 51.5 (B) 48.6 (C) 55 (D) 46.6

Answer:D

Solution:Time for pure $O_2 = 224$ sec

Time for mixture $(t_{mix}) = 234 \text{ s}$

Mixture composition: 80% O₂, 20% unknown gas (X)

The average molar mass (M $_{mix}$) of the mixture is:

$$\begin{split} M_{\rm mix} &= 0.8 \times M_{\rm O_2} + 0.2 \times M_{\rm X} \\ M_{\rm mix} &= 0.8 \times 32 + 0.2 \times M_{\rm X} = 25.6 + 0.2 \times M_{\rm X} \end{split}$$

Graham's Law relates time and molar mass: $\frac{t_{mix}}{t_{O_2}} = \sqrt{\frac{M_{mix}}{M_{O_2}}}$

Chemistry: Daltons Law And Grahams Law

 $\frac{234}{224} = \sqrt{\frac{M_{mix}}{32}}$ $\frac{234^2}{224} = \frac{M_{mix}}{32}$ $M_{mix} = 32 \times \frac{234^2}{224} \approx 34.91g / mol$

Solve for M_x:

 $34.91 = 25.6 + 0.2 \times M_X$ $M_X = 46.55 g / mol$

13. A straight glass tube has 2 inlets X & Y at the two ends of 200 cm long tube. HCl gas through inlet X and NH_3 gas through inlet Y are allowed to enter in the tube at the same time and under the identical conditions. At a point P inside the tube both the gases meet first. The distance of point P from X is :

(A) 118.9 cm (B) 81.1 cm (C) 91.1 cm (D) 108.9 cm

Answer:B

Solution:Length of tube (L) = 200 cm

Gases: HCl enters from X, NH₃ enters from Y (opposite ends).

Objective: Find the distance from X where HCl and NH₃ meet for the first time.

Graham's Law states that the rate of diffusion (r) of a gas is inversely proportional

to the square root of its molar mass (M): $\frac{r_{_{NH_3}}}{r_{_{HCl}}} = \sqrt{\frac{M_{_{HCl}}}{M_{_{NH_3}}}} = \sqrt{\frac{36.5}{17}} \approx \sqrt{2.147} \approx 1.465$

This means NH_3 diffuses ~1.465 times faster than HCl.

d = distance covered by HCl from X before meeting NH_3 .

200-d = distance covered by NH_3 from Y before meeting HCl.

Since time taken to meet is the same, and distance = rate × time, we

$$\frac{200 - d}{d} = \frac{r_{NH_3}}{r_{HCl}} = 1.465$$
have:

$$\frac{200 - d}{d} = 1.465d$$

$$d = \frac{200}{2.465} \approx 81.1cm$$

The distance of point P from X is 81.1 cm.

(Chemistry: Daltons Law And Grahams Law)

14. Two flasks of equal volume are connected by a narrow tube (of negligible volume) all at 27° C and contain 0.70 moles of H_2 at 0.5 atm. One of the flask is then immersed into a bath kept at 127° C, while the other remains at 27° C. The number of moles of H_2 in flask 1 and flask 2 are :

(A) Moles in flask 1 = 0.4, Moles in flask 2 = 0.3

(B) Moles in flask 1 = 0.2, Moles in flask 2 = 0.3

(C) Moles in flask 1 = 0.3, Moles in flask 2 = 0.2

(D) Moles in flask 1 = 0.4, Moles in flask 2 = 0.2

Answer:A

Solution:Step 1: Understand the Initial Conditions

Initial temperature $(T_1) = 27^{\circ}C = 300 \text{ K}$

Total moles of $H_2(n_{total}) = 0.70$ moles

Pressure (P) = 0.5 atm (same in both flasks initially)

Volume of each flask = V (equal volumes)

Step 2: After Heating One Flask

Flask 1: Remains at $T_1 = 300 \text{ K}$

Flask 2: Heated to $T_2 = 127$ °C = 400 K

Since the flasks are connected, the pressure will equalize in both flasks at equilibrium.

Step 3: Let Final Moles be n_1 (Flask 1) and n_2 (Flask 2)

At equilibrium:n1+n2=0.70(Total moles conserved)

The pressure in both flasks is the same, $so:P_1=P_2$

Using the Ideal Gas Law (PV = nRT) for both flasks:

 $\frac{n_1 R T_1}{V} = \frac{n_2 R T_2}{V}$ $n_1 T_1 = n_2 T_2$ $\frac{n_1}{n_2} = \frac{4}{3}$ $n_1 = \frac{4}{3} n_2$

Substitute into total moles:

$$\frac{4}{3}n_2 + n_2 = 0.70$$

$$n_2 = 0.30 moles$$

$$n_1 = \frac{4}{3} \times 0.30 = 0.40 moles$$

15. A teacher enters a classroom from front door while a student from back door. There are 13 equidistant rows of benches in the classroom. The teacher releases N_2O , the laughing gas, from the first bench while the student releases the weeping gas ($C_6H_{11}OBr$) from the last bench. At which row will the students starts laughing and weeping simultaneously

(A) 7 (B) 10 (C) 9 (D) 8

Answer:C

Solution:Step 1: Understand the Problem

Total rows = 13 (bench 1 is front, bench 13 is back).

 N_2O (laughing gas) starts diffusing from bench 1.

 $C_6H_{11}OBr$ (weeping gas) starts diffusing from bench 13.

Objective: Find the row where both gases meet simultaneously.

Step 2: Apply Graham's Law of Diffusion

The rate of diffusion (r) is inversely proportional to the square root of molar mass

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$
(M): $\frac{r_{N_2O}}{r_{C_6H_{11}OBr}} = \sqrt{\frac{M_{C_6H_{11}OBr}}{M_{N_2O}}} = \sqrt{\frac{179}{44}} \approx 2.02$

This means N_2O diffuses ~2.02 times faster than $C_6H_{11}OBr$.

Step 4: Relate Distances Covered

Let:x = distance (rows) covered by N2O from bench 1.

13-x = distance (rows) covered by $C_6H_{11}OBr$ from bench 13.

Since time taken to meet is the same, and distance = rate × time, we have:

 $\frac{x}{13-x} = \frac{r_{N_2O}}{r_{C_6H_{11}OBr}} = 2.02$ x = 2.02(13-x)3.02x = 26.26 $x \approx 8.7$

16. Two gases A and B having the same volume diffuse through a porous partition in 20 and 10s respectively. The molecular mass of A is 49 u. Molecular mass of B will be [AIPMT 2011]

(A) 12.25 u (B) 6.50 u (C) 25.00 u (D) 50.00 u

Answer:A

Solution: Step 1: Understand Graham's Law

The time of diffusion (t) is directly proportional to the square root of molar mass (M):

$$\frac{t_A}{t_B} = \sqrt{\frac{M_A}{M_B}}$$
$$t_A = 20s, t_B = 10s, M_A = 49u$$
$$\frac{20}{10} = \sqrt{\frac{49}{M_B}}$$
$$M_B = \frac{49}{4} = 12.25u$$

17. Equal moles of hydrogen and oxygen gases are placed in container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape?

[NEET 2016, Phase I]

(A) 1/4 (B) 3/8 C) 1/2 (D) 1/8

Answer:D

Solution:The rate of effusion (r) is inversely proportional to the square root of molar mass (M):

$$M_{H_2} = 2\,gms, M_{O_2} = 32\,gms$$
$$\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{32}{2}} = 4$$

This means H2 effuses 4 times faster than O_2 . Step 2: Relate Fractions Escaped Let:Time taken for half of H_2 to escape = t. Fraction of O_2 escaped in the same time = f. Since effusion is proportional to rate:

$$\frac{f_{O_2}}{f_{H_2}} = \frac{r_{O_2}}{r_{H_2}} = \frac{1}{4}$$

$$f_{H_2} = \frac{1}{2}$$

$$f_{O_2} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$
EGOS

The fraction of oxygen escaped is 1/8.

Daltons Law Of Partial Pressure

18. Equal masses of so $_2$ and O $_2$ are kept in a vessel at 27° C. The total pressure of the mixture is 2.1 atm. The partial pressure of SO $_2$ is

1) 1.4 atm2) 7 atm3) 0.7 atm4) 14 atm

Answer:3

Solution:Step 1: Understand the Given Data

Equal masses of SO_2 and O_2 are present.

Total pressure $(P_{total}) = 2.1$ atm

Temperature = 27°C = 300 K (not directly needed for partial pressure calculation).

Step 2: Calculate Moles of Each Gas

Let the mass of each gas be m grams.

Molar mass of $SO_2(M_1) = 64 \text{ g/mol}$ Molar mass of $O_2(M_2) = 32 \text{ g/mol}$

Number of moles: $n_{SO_2} = \frac{m}{64}, n_{O_2} = \frac{m}{32}$

Total moles: $n_{total} = \frac{m}{64} + \frac{m}{32} = \frac{3m}{64}$

Mole fraction of SO₂: $X_{SO_2} = \frac{n_{SO_2}}{n_{total}} = \frac{\frac{m}{32}}{\frac{3m}{64}} = \frac{1}{3}$

Partial pressure is given by: $P_{SO_2} = X_{SO_2} \times P_{total} = \frac{1}{3} \times 2.1 = 0.7 atm$

19. A gas mixture contains Nitrogen and Helium in 7 : 4 ratio by weight. The pressure of the mixture is 760mm. The partial pressure of Nitrogen is

1) 0.2 atm 2) 0.8 atm 3) 0.5 atm 4) 0.4 atm

Answer:1

Solution:Step 1: Understand the Given Data

Weight ratio of N_2 : He = 7 : 4

Total pressure $(P_{total}) = 760 \text{ mm} = 1 \text{ atm}$

Step 2: Calculate Moles of Each Gas

Let the masses be:Mass of $N_2 = 7$ g, Mass of He = 4 g

Moles of each gas:
$$n_{N_2} = \frac{7}{28} = 0.25 ml$$
, $n_{He} = \frac{4}{4} = 1 ml$

 $n_{total} = 0.25 + 1 = 1.25 mol$

Mole fraction of N₂: $X_{N_2} = \frac{0.25}{1.25} = 0.2$

Partial pressure is given by: $P_{N_2} = X_{N_2} \times P_{total} = 0.2 \times 1 = 0.2 atm$

20. A 200cc flask contains oxygen at 200mm pressure and a 300 cc flask contains Nitrogen at 100mm pressure. The two flasks are connected so that each gas occupies the combined volume. The total pressure of the mixture in mm is

1) 80 2) 60 3) 140 4) 300

Answer:3

Solution:Oxygen flask: 200 cc at 200 mm Hg

Nitrogen flask: 300 cc at 100 mm Hg

Combined volume after connection: 200 + 300 = 500 cc

Step 1: Calculate new partial pressures using Boyle's Law (P1V1 = P2V2)

For Oxygen:

 $P2 = (200 \text{ mm} \times 200 \text{ cc}) / 500 \text{ cc} = 80 \text{ mm} \text{ Hg}$

For Nitrogen:

 $P2 = (100 \text{ mm} \times 300 \text{ cc}) / 500 \text{ cc} = 60 \text{ mm} \text{ Hg}$

Step 2: Calculate total pressure

Total pressure = Partial pressure O_2 + Partial pressure N_2

= 80 mm + 60 mm = 140 mm Hg

21. In a ten litre vessel, the total pressure of a gaseous mixture containing H_2 , N_2 and CO_2 is 9.8 atm. The partial pressures of H_2 and N_2 are 3.7 and 4.2 atm, respectively. The partial pressure of CO_2 is

1) 1.9 atm2) 0.19 atm3) 2.4 atm4) 0.019 atm

Answer:1

Solution:Given:Total pressure $(P_{total}) = 9.8$ atm

Partial pressure $H_2 = 3.7$ atm

Partial pressure $N_2 = 4.2$ atm

Step 1: Apply Dalton's Law of Partial Pressures

 $P_{total} = P_{H2} + P_{N2} + P_{CO2}$

Step 2: Solve for P_{co2}

9.8 atm = 3.7 atm + 4.2 atm + P_{co2}

 $P_{co2} = 9.8 - (3.7 + 4.2) = 1.9$ atm

22. 3grams of H₂ and 24 grams of O₂ are present in a gaseous mixture at constant temperature and pressure. The partial pressure of H₂ is

1) $\frac{1}{3}$ of total pressure 2) $\frac{2}{3}$ of total pressure 3) $\frac{3}{2}$ of total pressure 4) $\frac{1}{2}$ of total pressure

Answer:2

Solution:Given:3 grams of H_2 ,24 grams of O_2

Constant temperature and pressure

Moles of H_2 = mass/molar mass = 3g/2g/mol = 1.5 mol

Moles of $O_2 = 24g/32g/mol = 0.75 mol$

Total moles = 1.5 + 0.75 = 2.25 mol

Mole fraction of $H_2(X_{H2})$ = moles of H_2 /total moles = 1.5/2.25 = 2/3

Partial pressure of H_2 (P_{H2}) = Mole fraction × Total pressure = (2/3) P_{total}

23. A gaseous mixture was prepared by taking equal moles of CO and N_2 . If the total pressure of the mixture was found 1 atom, the partial pressure of the nitrogen (N_2) in the mixture is

(A) 0.8 atm (B) 0.9 atm (C) 1 atm (D) 0.5 atm

Answer:D

Solution:Given:Equal moles of CO and N₂

Total pressure = 1 atm

Step 1: Let moles of CO = moles of N_2 = x mol

Total moles = $x + x = 2x \mod x$

Step 2: Calculate mole fraction of N₂

Mole fraction of $N_2(X_{N2}) = x/2x = 0.5$

Step 3: Determine partial pressure

Partial pressure of N_2 (P_{N2}) = Mole fraction × Total pressure = 0.5 × 1 atm = 0.5 atm

Answer:B

(A) $\frac{16}{17}$

Solution: Given: Equal weights of CO and CH₄

(B) $\frac{7}{11}$

300 K. The fraction of total pressure exerted by CH_4 is [2010]

Temperature = 300 K

Step 1: Let the weight of each gas = w grams

Molar mass of CO = 28 g/mol

Molar mass of CH4 = 16 g/mol

Step 2: Calculate moles of each gas

Moles of CO = w/28

Moles of $CH_4 = w/16$

Step 3: Determine mole fraction of CH_4

Total moles = (w/28) + (w/16) = w(1/28 + 1/16)

Mole fraction of $CH_4 (X_{CH4}) = (w/16)/w(1/28 + 1/16) =$

$$X_{CH_4} = \frac{\frac{1}{16}}{\frac{1}{16} + \frac{1}{28}} = \frac{\frac{1}{16}}{\frac{28 + 16}{16(28)}} = \frac{28}{44} = \frac{7}{11}$$

25. A gas (1g) at 4 bar pressure. If we add 2gm of gas B then the total pressure inside the container is 6 bar. Which of the following is true ? [2018]

Equal weights of CO and CH_4 are mixed together in an empty container at

(C) $\frac{8}{9}$

(A) $M_A = 2M_B$ (B) $M_B = 2M_A$ (C) $M_A = 4M_B$ (D) $M_B = 4M_A$

Answer:D

Solution: Given: Initial: 1g of gas A at 4 bar

After adding 2g of gas B: Total pressure = 6 bar

24.

(D) $\frac{5}{16}$

Step 1: Let molar masses be M_A and M_B Moles of A initially = $1/M_A$ Moles of B added = $2/M_B$ Step 2: Apply ideal gas law (PV = nRT) For initial state (only A): $4V = (1/M_A)RT$ RT/V = 4MAAfter adding B: $6V = (1/M_A + 2/M_B)RT$ Substitute RT/V: $6 = (1/M_A + 2/M_B)(4M_A)$ $6 = 4 + 8(M_A/M_B)$ $2 = 8(M_A/M_B)$ $M_A/M_B = 1/4$ $M_B = 4M_A$

26. Flask A of volume 10 litre containing 20 gram of H_2 and flask B of volume 10 litre containing 88 gram of CO_2 are connected by a connector having negligible volume. When valve of the connector iss opened what is the composition of H_2 gas in the flask B after opening the valve.

Answer:D

Solution:Given:

Flask A: 10 L volume, contains 20 g $\rm H_2$

Flask B: 10 L volume, contains 88 g CO₂

Connected via a negligible volume connector

Valve is opened, allowing gases to mix

Step 1: Calculate moles of each gas

Molar mass $H_2 = 2 \text{ g/mol} \longrightarrow$ Moles of $H_2 = 20 \text{ g} / 2 \text{ g/mol} = 10 \text{ mol}$

Molar mass $CO_2 = 44 \text{ g/mol} = 2 \text{ mol}$

Step 2: Determine total volume after mixing

Total volume = 10 L (Flask A) + 10 L (Flask B) = 20 L

Step 3: Calculate new concentrations after mixing

 H_2 :Initially in 10 L ---->Concentration = 10 mol / 10 L = 1 M

After mixing in 20 L ----> New concentration = 10 mol / 20 L = 0.5 M

CO₂:

Initially in 10 L ----> Concentration = $2 \mod / 10 \text{ L} = 0.2 \text{ M}$

After mixing in 20 L ----> New concentration = 2 mol / 20 L = 0.1 M

Mass Composition in Flask B

Mass of H_2 in Flask B after mixing = 5 mol × 2 g/mol = 10 g

Mass of CO_2 in Flask B = 1 mol × 44 g/mol = 44 g

Total mass in Flask B = 10 g + 44 g = 54 g

Mass percentage of $H_2 = (10 \text{ g} / 54 \text{ g}) \times 100^{-18.5\%}$

27. A 40 ml of a mixture of H_2 and O_2 at 18 °C and 1 atm pressure was sparked so that the formation of water was complete. The remaining pure gas had a volume of 10 ml at 18°C and 1 atm pressure. If the remaining gas was H_2 , the mole fraction of H_2 in the 40 ml mixture is :

(A) 0.75 (B) 0.5 (C) 0.65 (D) 0.85

Answer:A

Solution:Given:Total volume of H_2 and O_2 mixture = 40 mL at 18°C and 1 atm

After complete reaction to form water, remaining gas volume = 10 mL at same conditions

Remaining gas is H_2

Objective: Find the mole fraction of H_2 in the original mixture.

The reaction between H_2 and O_2 to form water is: $2H_2 + O_2 \rightarrow 2H_2O$

2 volumes of H2 react with 1 volume of O2 to form water (since volume α moles

at constant T & P). $V_{H2}=2x, V_{O2}=x$ $V_{total}=V_{H2}+V_{O2}=40ml$ $V_{H2}=40-x$ Substitute into the excess H₂ equation:(40-x)-2x=10 X=10 $V_{O2}=10$ mL (reacted fully) $V_{H2}=40-10=30$ mL (original H2)

Mole fraction of $H_2=30/40=0.75$

JEE ADVANCED LEVEL QUESTIONS

Multi Correct Answer Type

1. Dalton's law of partial pressure is not applicable to the following mixture of gases

1) $H_2 + F_2$ 2) $NH_3 + HC1$ 3) $SO_2 + Cl_2$ 4) $H_2 + O_2$

Answer:2

Solution:Dalton's Law of Partial Pressures states that the total pressure exerted by a mixture of non-reacting gases is equal to the sum of the partial pressures of individual gases. It is not applicable when gases react chemically or undergo association/dissociation.

 $\rm NH_3$ (ammonia) and HCl (hydrogen chloride) react immediately to form solid $\rm NH_4Cl$ (ammonium chloride).

Dalton's law is NOT applicable.

2. The correct mathematical equations for grahams law are at constant temperature and pressure

a.
$$\frac{r_1}{r_2} = \sqrt{\frac{M_1}{M_2}}$$
 b. $r\alpha \frac{1}{\sqrt{VD}}$ c. $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$ d. $\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}}$

Answer:b,c,d

Solution:Graham's Law of Diffusion/Effusion states: $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{d_2}{d_1}}$

Statement Type

3. Assertion : The diffusion rate of oxygen is smaller than that of nitrogen under identical conditions

Reason : Molecular mass of nitrogen is smaller than that of oxygen.

Answer:A

Solution:Assertion (True):

From Graham's Law, $r\alpha \frac{1}{\sqrt{M}}$

Oxygen (O 2.M=32) diffuses slower than nitrogen (N 2,M=28) because it is heavier.

Reason (True & Correct Explanation):

The reason correctly explains the assertion since $M_{N_2} < M_{O_2}$ leading to $r_{N_2} > r_{O_2}$

4. Assertion : Pressure exerted by a mixture of reacting gases is equal to the sum of their partial pressures.

Reason : Reacting gases react to form a new gas having pressure equal to the sum of both.

Answer:E

Solution:Assertion (False):Dalton's Law applies only to non-reacting gases.

Reason (False): The product gas's pressure depends on stoichiometry, not the sum of reactants.

5. Assertion : If H_2 and Cl_2 enclosed separately in the same vessel exert pressure of 100 and 200 mm respectively, their mixture in the same vessel at the same temperature will exert a pressure of 300 mm. [2008]

Reason : Daloton's law of partial pressures states that total pressure is the sum of partial pressures.

Answer:A

Solution: This is correct if we assume:"

Ideal gas behavior

No chemical reaction between H₂ and Cl₂

Same temperature and volume.So, Assertion is TRUE.

EdOS - Educational Operating System

6th	Clas	2
Sin	Clus	s

Chemistry: Daltons Law And Grahams Law

Reason:Dalton's law of partial pressures states that total pressure is the sum of partial pressures.This is the correct definition of Dalton's Law.

Comprehension Type

1) Rates of diffusion of two gases are in the reciprocal ratio of square roots of their molecular weight

2) Total pressure of a mixture of non reacting gases is given by the algebric sum of their partial pressure

6. O_2 is partially atomised due to certain experimental conditions. The mixture of O_2 molecules and O atoms diffuses $\sqrt{5}$ times slower than Helium. What is the percentage atomisation of O_2 ?

1) 50% 2) 20% 3) 40% 4) 60%

Answer:4

Solution:

 $\frac{r_{He}}{r_{mix}} = \sqrt{5} = \sqrt{\frac{M_{mix}}{M_{He}}}$ $5 = \frac{M_{mix}}{4}$ $M_{mix} = 20 \rightarrow average molecular mass$ $Let \% O_2 = 1 - x, \% of O = 2x$ $\frac{(1 - x) \times 32 + 2x \times 16}{1 - x + 2x} = 20$ $\frac{32 - 32x + 32x}{1 + x} = 20$ 32 = 20(1 + x) 1.6 = 1 + x x = 0.6

Percentage atomization:0.6x100=60%

7. What is the mass of water vapour in the one m^3 of air with 0.4 relative humidity at 300K?

(Aqueous tension at 300 K=3.6 K P1)

1) 22.12 gm 2) 10.53 gm 3) 4.68 gm 4) 2.86 gm

Answer:2

Solution:

 $Re\ lativeHumidity = \frac{P_{H_{20}}}{Aq.Tension} \Rightarrow 0.4 = \frac{P_{H_{20}}}{3.6 \times 10^3}$ $P_{H_{20}} = 1.44 \times 10^3 Pa$ $PV = nRT = \frac{WRT}{M}$ $W = \frac{PVM}{RT} = \frac{1.44 \times 10^3 \times 1 \times 18}{8.314 \times 300} = 10.53 gm$

Matching Type

8. Answer:1-S,2-P,3-Q,4-S

Solution:

Column I

Column II

S) Molecular mass

- 1) Diffusion of gas
- 2) Daltons Law

P) SO_3 and O_2

3) Relative Humidity

Q) Partial pressure of water in air Vapour pressure of water

4) Rate of diffusion

S) Molecular mass

Integer Type

9. In what ratio by mass carbon monoxide and nitrogen should be mixed so that partial pressure exerted by each gas is same ?

Answer:1

Solution:Molar mass of CO = 28 g/mol

Molar mass of $N_2 = 28$ g/mol

 $\frac{m_{CO}}{28} = \frac{m_{N_2}}{28}$ $\frac{m_{CO}}{m_{N_2}} = \frac{1}{1}$

10. The ratio of the ratio of diffusion of helium and methane under identical condition of pressure and temperature will be _____

Answer:2

Solution:
$$\frac{r_{He}}{r_{CH_4}} = \sqrt{\frac{M_{CH_4}}{M_{He}}} = \sqrt{\frac{16}{4}} = 2$$

LARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

Grahams Law Of Diffusion

1. If some moles of O_2 diffuse in 18 sec and same moles of other gas diffuse in 45 sec then what is the molecular weight of the unknown gas

(A) $\frac{45^2}{18^2} \times 32$ (B) $\frac{18^2}{45^2} \times 32$ (C) $\frac{18^2}{45^2 \times 32}$ (D) $\frac{45^2}{18^2 \times 32}$

Answer:A

Solution:

$$\frac{t_{o_2}}{t_x} = \sqrt{\frac{M_{o_2}}{M_x}}$$
$$\frac{18}{45} = \sqrt{\frac{32}{M_x}}$$
$$\frac{45}{18} = \sqrt{\frac{M_x}{32}}$$
$$M_x = (\frac{45}{18})^2.32$$

2. The ratio of rates of diffusion of SO_2 , O_2 and CH_4 is

(A) $_{1:\sqrt{2}:2}$ (B) 1:2:4 (C) $_{2:\sqrt{2}:1}$ (D) $_{1:2:\sqrt{2}}$

Answer:A

Solution:

 $r\alpha \frac{1}{\sqrt{M}}$ $r_{SO_2} \alpha \frac{1}{\sqrt{64}}$ $r_{O_2} \alpha \frac{1}{\sqrt{32}}$ $r_{CH_4} \alpha \frac{1}{\sqrt{16}}$ $r_{SO_2} : r_{O_2} : r_{CH_4} = \frac{1}{\sqrt{64}} : \frac{1}{\sqrt{32}} : \frac{1}{\sqrt{16}} = \frac{1}{8} : \frac{1}{5.66} : \frac{1}{4} = 1:1.41:2$ $r_{SO_2} : r_{O_2} : r_{CH_4} = 1: \sqrt{2}:2$

4. 50 ml of hydrogen diffuses out through a small hole from a vessel in 20 minutes. The time needed for 40 ml of oxygen to diffuse out is

(A) 12 min (B) 64 min (C) 8 min (D) 32 min

Answer:B

Solution:

 $r\alpha \frac{V}{t}$ $V_{H_2} = 50ml, t_{H_2} = 20\min, V_{O_2} = 40ml$ $t_{O_2} = \frac{40 \times 4}{2.5} = 64\min$

5. The ratio of the rate of diffusion of helium and methane under identical condition of pressure and temperature will be

(A) 4 (B) 2 (C) 1 (D) 0.5

Answer:B

Solution:

EdOS - Educational Operating System

 $\frac{r_{\rm He}}{r_{\rm CH_4}} = \sqrt{\frac{M_{\rm CH_4}}{M_{\rm He}}}$ $\frac{r_{He}}{r_{CH_4}} = \sqrt{\frac{16}{4}}$ $\frac{r_{_{He}}}{r_{_{CH_4}}} = \sqrt{4}$ $\frac{r_{He}}{r_{CH_4}} = \frac{2}{1}$

Among $\mathrm{N_2,O_2}$ and $\mathrm{SO_2}$ the gas with high rate of diffusion is 6.

1)O₂ $2)SO_2$ $3)N_2$ 4)All are same Answer:3

Solution: $r\alpha \frac{1}{\sqrt{M}}$ Lighter gases diffuse faster. Molar masses: M_{N2} =28g/mol $M_{02}=32g/mol$ $M_{so2}=64g/mol$ N_2 is lightest \rightarrow fastest diffusion. Ansil's Alaram is used to detect in mines 7. 4) COCl₂ 1) CO_2 2) CO 3) CH₄ Answer:3 Solution: Ansil's Alaram is used to detect CH_4 in mines The gas which diffuses twice as quickly as SO_2 is 8. 3) O₂ 1) CH₄ 2) H₂ 4) He Answer:1 $4 = \frac{64}{M_{av}}$ Solution: $M_{gas} = 16g / mol$

EdOS - Educational Operating System

 CH_4 (methane) has =16g/mol

- 9. Which of the following pair of gases diffuse through a porous plug with the same rates of diffusion
 - 1) CO, NO 2) NO_2 , CO_2 3) NH_3 , PH_3 4) NO, $C_2 H_6$

Answer:4

Solution:Gases with the same molar mass diffuse at the same rate.

co (28 g/m ol) and NO (30 g/m ol) \rightarrow Not same.

 NO_2 (46 g/mol) and CO_2 (44 g/mol) \rightarrow Not same.

 NH_3 (17 g/mol) and PH_3 (34 g/mol) $\rightarrow Not$ same.

- NO (30 g/mol) and C_2H_6 (30 g/mol) \rightarrow Same!
- 10. A mixture of 3 gases X(density 0.90), Y (density 0.178) and Z (density0.42) is enclosed in a vesel at constant temperature. When the equilibrium is established the

1) Gas X will be at the top of the vessel

2) Gas Y will be at the top of the vessel

3) Gas Z will be at the top of the vessel

4) Gases will mix homogeneously through out the vessel

Answer:4

Solution:Gases mix homogeneously due to random motion, regardless of density. Density affects separation under gravity, but not diffusion in a closed vessel.

11. The ratio of rate of diffusion of carbondioxide and nitrous oxide is

1) 2 : 1 2) 1 : 2 3) 16 : 1 4) 1 : 1

Answer:4

Solution:Molar Masses:CO₂: 12+2×16=44g/mol

N₂O: 2×14+16=44g/mol

$$\frac{r_{CO_2}}{r_{N_2O}} = \sqrt{\frac{M_{N_2O}}{M_{C2O}}} = \sqrt{\frac{44}{44}} = 1$$

12. Which of the following diffuses slowly

1) SO_2 2) N_2 3) O_2 4) Cl_2

Answer:4

EdOS - Educational Operating System

Chemistry: Daltons Law And Grahams Law

Solution: Cl_2 has the highest molar mass, so it diffuses the slowest.

13. A bottle of perfume is opened in the corner of a large Hall of volume 1000m³. After some time the whole Hall smells of the perfume. The property of gases responsible for this observation is

1) Thermal conductivity 2) Viscosity 3) Diffusion 4) Compressibility

Answer:3

Solution:Diffusion is the process by which gas molecules spread out from an area of high concentration (perfume bottle) to low concentration (entire hall).

14. Rate of the diffusion of NO_2 is

- 1) Greater than that of NO 2) Less than that of NO
- 3) Same as that of NO 4) Half of that of NO

Answer:2

Solution:From Graham's Law, the rate of diffusion (r) is inversely proportional to

the square root of molar mass (M): $r\alpha \frac{1}{\sqrt{M}}$

Molar mass of $NO_2 = 46 \text{ g/mol}$

Molar mass of NO = 30 g/mol

Since M_{NO2} > M_{NO} , the rate of diffusion of NO₂ is less than that of NO.

- 15. Under identical conditions which of the following has maximum diffusion rate
 - 1) Cl_2 2) H_2 3) CO_2 4) O_2

Answer:2

Solution:From Graham's Law, the rate of diffusion (r) is inversely proportional to

the square root of molar mass (M): $r\alpha \frac{1}{\sqrt{M}}$

 H_2 (M = 2 g/mol) \rightarrow Lightest \rightarrow Fastest diffusion

- Cl₂ (M = 71 g/mol), CO₂ (M = 44 g/mol), O₂ (M = 32 g/mol) → Heavier → Slower diffusion
- 16. The correct order of diffusion for the gases H_2 , N_2 , O_2 and NH_3 is

1)
$$H_2 > N_2 > O_2 > NH_3 2$$
) $NH_3 > O_2 > N_2 > H_2 3$) $H_2 > N_2 > NH_3 > O_2 4$) $H_2 > NH_3 > N_2 > O_2 3$

Answer:4

Solution:First, list the molar masses:

 $EdOS\mathchar`e Educational\ Operating\ System$

H2 (2 g/mol) \rightarrow Fastest

NH3 (17 g/mol)

N2 (28 g/mol)

O2 (32 g/mol) \rightarrow Slowest

D iffusion rate order (lightest to heaviest): H $_2$ > NH $_3$ > N $_2$ > O $_2$

Daltons Law Of Partial Pressure

17. The vapour pressure of a dry gas is

- 1) Less than that of wet gas 2) greater than that of wet gas
- 3) equal to that of wet gas 4) double then wet gas

Answer:1

Solution:Dry gas: Contains no water vapor.

Wet gas: Contains water vapor, which contributes additional partial pressure.

- Since wet gas includes water vapor, its total pressure (vapor pressure) is higher than that of dry gas.
- 18. Aqueous tension is dependent on
 - 1) V 2) P 3) T 4)weight of gas

Answer:3

Solution:Aqueous tension is the vapor pressure of water in equilibrium with liquid water.

Vapor pressure depends only on temperature (T) for a pure substance.

It is independent of volume, external pressure, or weight of gas.

19. In a given mixture of gases which do not react with one another the ratio of partial pressure of each compound is equal to its

1) weight percent 2) Volume percent3) Mole fraction 4)Critical pressure

Answer:3

Solution:Dalton's Law states: Partial pressure (P_i) = Mole fraction (X_i) × Total pressure (P_{total}).

Thus, the ratio of partial pressures is equal to the ratio of mole fractions.

20. At the same temperature, HCl gas and NH_3 gas are present in two vessels of same volume at a pressure of 'P' atmospheres each. When one jar is inverted over the other so that the two will mix, after some time the pressure in the

vessels will become.

1) $\frac{P}{2}$ 2) $\frac{P}{4}$ 3) Zero 4) P

Answer:3

- Solution:Initial Conditions:HCl gas: Volume = V, Pressure = P, Moles = n (using PV=nRT).
- NH3 gas: Volume = V, Pressure = P, Moles = n.
- Chemical Reaction:
- When HCl and NH_3 mix, they react completely to form solid NH_4Cl (ammonium chloride): $HCl + NH_3 \rightarrow NH_4Cl$
- 1 mole HCl reacts with 1 mole NH_3 to form a non-gaseous product.

After Mixing:

Total initial moles of gas = $n_{HCI} + n_{NH3} = n + n = 2n$.

All gas molecules react completely, leaving zero moles of gas in the vessel.

- Since pressure is proportional to moles of gas (P α n), the final pressure becomes zero.
- 21. Which gas can be Collected over water

1) NH_3 2) N_2 3) HCl 4) SO_2

Answer:2

- Solution:N₂ (Nitrogen) is insoluble in water and chemically inert, making it suitable for collection over water.
- Other gases listed (NH₃, HCl, SO₂) are highly soluble or reactive with water, so they cannot be collected this way.
- 22. The vapour pressure of a moist gas at 35 °C is 750 mm and aqueous tension at that temperature is 10mm. Then vapour pressure of the dry gas is

1) 750mm 2) 760mm 3) 740mm 4) 720mm

Answer:3

Solution:Moist gas pressure = Pressure of dry gas + Aqueous tension (water vapor pressure).

Given: $P_{moist} = 750 mm$, $P_{water} = 10 mm$

EdOS - $Educational \, Operating \, System$

Chemistry: Daltons Law And Grahams Law

Dry gas pressure = $P_{moist} - P_{water} = 750 - 10 = 740 mm$

JEE MAINS LEVEL QUESTIONS

Grahams Law Of Diffusion

23. $201 \text{ of } SO_2 \text{ diffuses through a porous partition in 60 seconds. Volume of <math>O_2 \text{ diffuse under similar conditions in 30 seconds will be :$

(A) 12.14 1 (B) 14.14 1 (C) 18.14 1 (D) 28.14 1

Answer:B

Solution: V_{SO2} =20L, t_{SO2} =60sec----> r_{SO2} =20/60 V_{O2} =?, t_{SO2} =30sec----> r_{O2} =V?30

Graham's Law of Diffusion:

The values of X and Y are opened simultaneously. The white fumes of $\rm NH_4Cl$ will first form at:

 $\textbf{(A)} A \qquad \textbf{(B)} B \qquad \textbf{(C)} C \qquad \textbf{(D)} A, B and C simultaneously$

Answer:C

- Solution: White fumes appear first at C because $\rm NH_3$ arrives there before HCl due to its faster diffusion.
- **25.** X ml of H_2 gas effuses through a hole in a container in 5 sec. The time taken for the effusion of the same volume of the gas specified below under identical conditions is :

(A) 10 sec. He (B) 20 sec. O_2 (C) 25 sec. CO_2 (D) 55 sec. CO_2

Answer:B

Solution:Graham's Law of Effusion:

The time (t) for effusion is directly proportional to the square root of the molar mass (M):

 $\frac{t_1}{t_2} = \sqrt{\frac{M_1}{M_2}} \\ t_{H_2} = 5 \sec, M_{H_2} = 2g / mol$

(A) 10 sec. He

 $\frac{5}{t_{He}} = \sqrt{\frac{2}{4}}$ $t_{He} = 5(\sqrt{2}) = 7 \sec(1)$

(B) 20 sec. O₂

$$\frac{5}{t_{o_2}} = \sqrt{\frac{2}{32}}$$
$$t_{o_2} = 5(4) = 20 \sec^2 6$$

(C) 25 sec. CO₂ &(D) 55 sec. CO₂

$$\frac{5}{t_{CO_2}} = \sqrt{\frac{2}{44}}$$
$$t_{CO_2} = 5(\sqrt{22}) = 23.45 \text{ sec}$$

26. Three identical footballs are respectively filled with nitrogen , hydrogen and helium at same pressure. If the leaking of the gas occurs with time from the filling hole, then the ratio of the rate of leaking of gases $(r_{N_2} : r_{H_2} : r_{H_2})$ from three footballs under identical conditions (in equal time interval) is :

(A) $(1:\sqrt{14}:\sqrt{7})$ (B) $(\sqrt{14}:\sqrt{7}:1)$ (C) $(\sqrt{7}:1:\sqrt{14})$ (D) $(1:\sqrt{7}:\sqrt{14})$

Answer:A

Solution:

$$\begin{split} r_{N_2} &: r_{H_2} : r_{He} = \frac{1}{\sqrt{28}} : \frac{1}{\sqrt{2}} : \frac{1}{\sqrt{4}} = \frac{1}{2\sqrt{7}} : \frac{1}{\sqrt{2}} : \frac{1}{2} \\ r_{N_2} : r_{H_2} : r_{He} = \frac{1}{\sqrt{7}} : \sqrt{2} : 1 = 1 : \sqrt{14} : \sqrt{7} \end{split}$$

27. The rates of diffusion of SO₃, CO₂, PCl₃ and SO₂ are in the following order -(A) $PCl_3 > SO_3 > SO_2 > CO_2$ (B) $CO_2 > SO_2 > PCl_3 > SO_3$

(C) $SO_2 > SO_3 > PCl_3 > CO_2$ (D) $CO_2 > SO_2 > SO_3 > PCl_3$

Answer:D

Solution:Lighter gases diffuse faster

The correct order is $CO_2 > SO_2 > SO_3 > PCl_3$,

28. A and B are two identical vessels. A contains 15 g ethane at 1atm and 298 K. The vessel B contains 75 g of a gas X_2 at same temperature and pressure. The vapour density of X_2 is :

(A) 75	(B) 150	(C) 37.5	(D) 45

Answer:A

Solution:Vessel A:

Mass of ethane $(C_2H_6) = 15 \text{ g}$

Molar mass of $C_2H_6 = 30 \text{ g/mol}$

Moles of $C_2H_6 = 15/30=0.5$ moles

Vessel B:

Mass of gas $X_2 = 75$ g

Let molar mass of $X_2 = Mg/mol$

Moles of $X_2 = 75/M$ mol

Since both vessels have the same volume (V), pressure (P), and temperature (T), the number of moles must be equal:

 $n_{C2H6}=n_{X2}$

0.5=75/M

M=75/0.5=150g

Vapour density (VD) is half the molar mass:VD=M/2=150/2=75

EdOS - Educational Operating System

9th Class

Daltons Law Of Partial Pressure

29. A sample of O₂ gas is collected over water at 23°C at a barometric pressure of 751 mm Hg (vapour pressure of water at 23° C is 21 mm Hg). The partial pressure of O_2 gas in the sample collected is

(A) 21 mm Hg **(B)** 751 mm Hg **(C)** 0.96 atm (**D**) 1.02 atm

Answer:C

Solution: Total Pressure (Barometric Pressure): 751 mm Hg

Vapour Pressure of Water: 21 mm Hg

Partial Pressure of O₂:P₀₂=P_{total}-P=751-21=730mm Hg

Convert to atm: $730 mmHg \times \frac{1atm}{760 mmHg} \approx 0.96 atm$

- Equal weights of ethane & hydrogen are mixed in an empty container at 25° 30. C, the fraction of the total pressure exerted by hydrogen is:
 - (B) 1: 1 (C) 1: 16 **(A)** 1:2 **(D)** 15: 16

Answer:D

Solution:Let mass of each gas = w g.

Moles of $H_2 = \frac{w}{2}$

Moles of $C_2H_6 = \frac{w}{30}$

Mole Fraction of H₂: $X_{H_2} = \frac{\frac{w}{2}}{\frac{w}{2} + \frac{w}{30}} = \frac{\frac{w}{2}}{\frac{30w + 2w}{2(20)}} = \frac{30}{32} = \frac{15}{16}$

Partial Pressure Contribution: $P_{H_2} = X_{H_2} \times P_{total} = \frac{15}{16} P_{total}$

31. A mixture of hydrogen and oxygen at one bar pressure contains 20% by weight of hydrogen. Partial pressure of hydrogen will be

(A) 0.2 bar **(B)** 0.4 bar (C) 0.6 bar (D) 0.8 bar

Answer:D

Solution: Assume 100 g of mixture:

EdOS - Educational Operating System

Chemistry: Daltons Law And Grahams Law

9th Class

Mass of $H_2 = 20 \text{ g} \rightarrow \text{Moles}= 20/2 = 10 \text{mol}$

Mass of O2 = $80 \text{ g} \rightarrow \text{Moles} = 80/32=2.5 \text{mol}$

Mole Fraction of $H_2: X_{H_2} = \frac{10}{10 + 2.5} = 0.8$

Partial Pressure of H_2 : $P_{H_2} = X_{H_2} \times P_{total} = 0.8 \times 1 = 0.8 bar$

32. A compound exists in the gaseous phase both as monomer **(A)** and dimer (A₂). The atomic mass of A is 48 and molecular mass of A₂ is 96. In an experiment 96 g of the compound was confined in a vessel of volume 33.6 litre and heated to 273°C. The pressure developed if the compound exists as dimer to the extent of 50 % by weight under these conditions will be :

(A) 1 atm (B) 2 atm (C) 1.5 atm (D) 4 atm

Answer:B

Solution:

 $A_{2} = 2A$ $W_{A} = 48g, W_{A_{2}} = 48g$ $n_{A} = \frac{48}{48} = 1, n_{A_{2}} = \frac{48}{96} = \frac{1}{2}$ $n_{total} = \frac{3}{2}$ $P = \frac{3}{2} \times \frac{0.0821 \times 546}{33.6} = 2atm$

JEE ADVANCED LEVEL QUESTIONS

Multi Correct Answer Type

32. Which gas can be Collected over water

1) NH_3 2) CO 3) N_2 4) H_2

Answer:2,3,4

Solution: Analysis of Options:

 NH_3 (Ammonia):

Highly soluble in water (forms NH_4OH) \rightarrow Cannot be collected over water.

CO (Carbon Monoxide): Insoluble and non-reactive \rightarrow Can be collected over water.

 N_2 (Nitrogen):Insoluble and inert \rightarrow Can be collected over water.

EdOS - Educational Operating System

- H² (Hydrogen):Insoluble and non-reactive \rightarrow Can be collected over water.
- 33. Dalton's law of partial pressure is not applicable to the following mixture of gases at room temperature.
 - 1) $H_2 + N_2$ 2) $H_2 + O_2$ 3) $O_2 + N_2$ 4) $CO+Cl_2$

Answer:4

Solution: Dalton's Law applies only to non-reacting gases.

CO + Cl₂ react at room temperature to form COCl₂ (phosgene):

$$CO + Cl_2 \rightarrow COCl_2$$

Other mixtures $(H_2 + N_2, H_2 + O_2, O_2 + N_2)$ do not react at room temperature.

Statement Type

34. Assertion : 1/4th of the gas is expelled if air present in an open vessel is heated from 27° C to 127° C.

Reason : Rate of diffusion of a gas is inversely proportional to the square root of its molecular mass.

Answer:B

Solution:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
(initialFraction) $\frac{V_1}{V_2} = 1$ when $T = 27^{\circ}C$

At 127°C the newfraction is $\frac{V_1}{V_2} = \frac{300}{400} = \frac{3}{4}$

air expelled $:1-\frac{3}{4}=\frac{1}{4}$

- Rate of diffusion of a gas is inversely proportional to the square root of its molecular mass.
- 35. Assertion : Effusion rate of oxygen is smaller than nitrogen.[2004]

Reason : Molecular size of nitrogen is smaller than oxygen

Answer:C

Solution: M_{02} > M_{N2} , So Effusion rate of oxygen is smaller than nitrogen.

- Molecular size decreases from left to right along a period. Thus, molecular size of nitrogen is greater than that of oxygen.
- **36. Assertion :** Pressure exerted by a mixture of gases is equal to the sum of their partial pressures.

Reason : Reacting gases react to form a new gas having pressure equal to the sum of both.

Answer:C

Solution:Assertion (True):

Dalton's Law states: P_{total}=P_i for non-reacting gases.

Reason (False): Reacting gases do not follow Dalton's Law

Comprehension Type

Dalton's law of partial pressure states "at a given temperature, the total pressure exerted by two or more non-reacting gases occupying a definite volume in equal to the sum of the partial pressures of the component gases."

 $P_{Total} = p_1 + p_2 + p_3 + \dots$ (At constant V and T)

$$= \left(\frac{n_1}{V} + \frac{n_2}{V} + \frac{n_3}{V} + \dots\right) RT = (n_1 + n_2 + n_3 + \dots) \frac{RT}{V} = \frac{nRT}{V}$$

Where $n = n_1 + n_2 + n_3 + \dots =$ Total moles, V = Total volume

$$P_{Total} = \sum p_i = \frac{RT}{V} \sum n_i$$

Dalton's law of partial pressure is applicable only to non-reacting gases.

37. The partial pressure of hydrogen in a flask containing two grams of hydrogen and 32 gm of sulphur dioxide is :

(A) 1/16th of the total pressure

(C) 2/3 of the total pressure

Answer:C

Solution:Hydrogen (H_2):Molar mass = 2 g/mol, Moles of H_2 =2/2=1mol

Sulfur Dioxide (SO_2) :Molar mass = 64 g/mol,Moles of SO_2 = 32/64=0.5 moles

$$X_{H_2} = \frac{MolesOfH_2}{TotalMoles} = \frac{1}{1+0.5} = \frac{2}{3}$$

Partial Pressure of H₂: $P_{H_2} = X_{H_2} \times P_{total} = \frac{2}{3} P_{total}$

Matching Type

38. Answer:2

Solution:

List -I

A. Effusion	1. $r\alpha \frac{1}{d}$
B. Velocity of gas	3. Vector quantity
C. Pressure of the gas	2. Collision of molecules on the walls
	4. Scalar quantity
4	

List-II

1

1. A-4, B-2, C-3 2. A-1, B-3, C-2 3. A-1, B-2, C-4 4. A-1, B-4, C-3

Integer Type

39. 3.2g of oxygen (At.wt =16) and 0.2g of hydrogen (At.wt=1) are placed in a 1.12 litre flask at 0°C. The total pressure of the gas mixture will be_____ atm

Answer:4

Solution: n_{02} =3.2/32=0.1moles n_{H2} =0.2/2=0.1 moles n_{total} =0.1+0.1=0.2moles Apply Ideal Gas Law to Find Total Pressure: PV=nRT (B) 1/9th of the total pressure

Chemistry: Daltons Law And Grahams Law

(D) 1/8th of the total pressure

Chemistry: Daltons Law And Grahams Law

 $P = \frac{nRT}{V}$ $P = \frac{0.2 \times 0.0821 \times 273}{1.12} \approx 4 atm$

KEY

					TEACHING	TASK				
					JEE MAINS	EVEL QU	ESTIONS			
	1	2	3	4	5	6	7	8	9	10
	3	2	1	4	4	2	1	3	2	3
	11	12	13	14	15	16	17	18	19	20
В		D	В	Α	С	Α	D	3	1	3
	21	22	23	24	25	26	27			
	1	2	D	В	D	D	Α			
					JEE ADVA	NCED LEVE	L QUESTIO	NS		
	1	2	3	4	5	6	7	8		
	2	B,C,D	Α	E	Α	4	2	1-S,2-P,3-	Q, 4-S	
	9	10								
	1	2								
					LARNERS	TASK				
	1	2	3	4	5	6	7	8	9	10
Α		А		В	В	3	3	1	4	4
	11	12	13	14	15	16	17	18	19	20
	4	4	3	2	2	4	1	3	3	3
	21	22	23	24	25	26	27	28	29	30
	2	3	В	С	В	Α	D	Α	С	D
	31	32	32	33	34	35	36	37	38	39
D		В	2,3,4	4	В	С	С	С	2	4

Chemistry: Daltons Law And Grahams Law

EdOS - Educational Operating System