16. STOICHIOMETRY ATOMIC WEIGHT, MOLECULAR WEIGHT AND GMV SOLUTIONS

TEACHING TASK

JEE MAIN LEVEL QUESTIONS

Calculate the number of Cl⁻ and Ca²⁺ ions in 222 g anhydrous CaCl₂ 1.

Answer:2

Solution: Molar mass of CaCl₂ = $40 + (35.5 \times 2) = 111 \text{ g/mol}$

Moles = 222 / 111 = 2 moles

1 mole of CaClgives:

 $1 \text{ Ca}^{2+} \text{ ion } \rightarrow 2 \text{ moles} = 2 \times N = 2N$

 $2 \text{ Cl}^- \text{ ions } \rightarrow 2 \times 2 \times N = 4N$

2. Which one of the following pairs of gases contain the same number of molecules?

1) 16 g of O_2 and 14 g of N_2 2) 8 g of O_2 and 22 g of CO_2

3) 28 g of $\rm N_2$ and 22 g of $\rm CO_2$ 4) 32 g of $\rm O_2$ and 32 g of $\rm N_2$

Answer:1

Solution:Moles of O_2 = 16 / 32 = 0.5

Moles of $N_2 = 14 / 28 = 0.5$

Same moles \rightarrow Same number of molecules (Avogadro's Law).

The total number of gm-atoms of SO₂Cl₂ in 13.5g of sulphuryl chloride is 3.

Answer:1

Solution:Molar mass of $SO_2Cl_2 = 32 + 32 + 71 = 135 \text{ g/mol}$

Moles = 13.5 / 135 = 0.1 moles (gm-molecules).

Atoms= $5 \times 0.1 = 0.5$

no 0.5 in the options consider molecules 0.1

4. How many atoms are contained in one mole of sucrose $(C_{12}H_{22}O_{11})$?

1) $45 \times 6.02 \times 10^{23}$ atoms/mole

2) $5 \times 6.62 \times 10^{23}$ atoms/mole

3) $5 \times 6.02 \times 10^{23}$ atoms/mole 4) None of these

Answer:1

Solution: Sucrose has 45 atoms per molecule (12 C + 22 H + 11 O).

Total atoms = $45 \times \text{Avogadro's number } (6.02 \times 10^{23}).$

A sample of phosphorus trichloride (PCl₂) contains 1.4 moles of the substance. How many atoms are there in the sample?

3)
$$8.431 \times 10^{23}$$
 4) 3.372×10^{24}

4)
$$3.372 \times 10^{24}$$

Answer:4

Solution:PCl₃ has 4 atoms per molecule (1 P + 3 Cl).

Total atoms = $1.4 \times 4 \times 6.02 \times 10^{23} = 3.372 \times 10^{24}$.

6. The molecular weight of hydrogen peroxide is 34. The weight of 1 mole of H_2O_2 is

Answer:3

Solution:1 mole = molar mass in grams \rightarrow 34 g.

7. The number of electrons in a mole of hydrogen molecule is

1)
$$6.02 \times 10^{23}$$

2)
$$12.046 \times 10^{23}$$

3)
$$3.0115 \times 10^{23}$$

Answer:2

Solution: H₂ has 2 electrons per molecule.

Total electrons = $2 \times 6.02 \times 10^{23} = 12.04 \times 10^{23}$.

8. The largest number of molecules are present in

2) 28g of
$$CO_2$$
 3) 46g of CH_3OH 4) 54g of N_2O_5

4) 54g of
$$N_2O_5$$

Answer:1

Solution: Moles:

 $H_{2}O: 34 / 18 = 1.89$

 CO_2 : 28 / 44 = 0.64

 $CH_{2}OH: 46 / 32 = 1.44$

 $N_{2}O_{5}$: 54 / 108 = 0.5

Highest moles \rightarrow Most molecules.

9. The number of moles of sodium oxide in 620 g of it is

- 1) 1 mole
- 2) 10 moles
- 3) 18 moles
- 4) 100 moles

Answer:2

Solution: Molar mass of Na₂O = $(2 \times 23) + 16 = 62$ g/mol

Moles = 620 / 62 = 10 moles.

Calculate the number of atoms of oxygen present in 88 g CO₂. What would be the weight of CO having the same number of oxygen atoms?

- 1) 224 g, 6.023×10^{23}
- 2) 222 g, 12.056×10^{23}
- 3) 120 g, 18.023×10^{23}
- 4) 112 g, 24.02×10^{23}

Answer:4

Solution:Step 1: CO₂

Molar mass = 44 g

Moles = 88 / 44 = 2 mol

Each CO_2 has 2 O atoms, so total O atoms = 2 mol × 2 × 6.022×10²³= 2.4088 × 10^{24}

Step 2: CO

Each CO has 1 O atom, so to get same number of O atoms, need 2.4088×10^{24} CO molecules = 4 moles

Mass of CO = $4 \text{ mol} \times 28 \text{ g} = 112 \text{ g}$

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

- 11. The mass of one atom of an unknown element is $4 \times 1.66 \times 10^{-24}$ g. The element is:
- A) Hydrogen
- B) Helium
- C) Oxygen
- D) Sulphur

Answer:B

Solution:Mass of 1 atomic mass unit (amu) = 1.66×10^{-24} g

Given mass = $4 \times 1.66 \times 10^{-24}$ g

Atomic mass = 4 amu → Helium

- 12. The weight of ammonia molecule in grams is:
 - A) 17a.m.u

- B) 17×10^{-3}
- C) $17 \times 1.66 \times 10^{-24}$ g
- D) $17 \times 1.66 \times 10^{-27} \text{ Kg}$

Answer:C

Solution: Molecular mass of $NH_3 = 14$ (N) + 3 (H) = 17 a.m.u.

Conversion to grams:1a.m.u=1.66×10 -24g

Weight in grams = $17 \times 1.66 \times 10^{-24}$ g

STATEMENT TYPE

- 1. A and R are correct R is the correct explanation of A
- 2. A and R are correct R is not the correct explanation of A
- 3. A is correct, but R is wrong
- 4. A is wrong, but R is correct
- 13. **Assertion (A):** a.m.u. is the smallest unit of mass used to measure the masses of atoms and subatomic particles.

Reason (R): 1 a.m.u.= $1.67 \times 10^{-24} g$

Answer:2

Solution: Assertion (A): a.m.u. is the smallest unit of mass used to measure the masses of atoms and subatomic particles.

Correct — a.m.u. (atomic mass unit) is used for atomic and subatomic particles.

Reason (R):1 a.m.u. =
$$1.67 \times 10^{-24}$$
g

Correct (approximate) — actual value is 1.66×10^{-24} g, but 1.67×10^{-24} g is acceptable in rounded form.

Reason (R) provides the numerical value of 1 a.m.u in grams. This value does not explain why a.m.u. is the smallest unit used for atoms and subatomic particles. The reason for using a.m.u. is the extremely small scale of atomic masses, not its specific conversion to grams.

14. **Assertion (A):** Volume of 22 grof CO₂ is 22.4 lit at STP.

Reason (R):Volume occupied by 1 mole of a gas at STP is called gram molecular weight.

Answer:5

Solution: Assertion (A): Incorrect — 22 g of CO₂ is not 1 mole.

Molar mass of CO_2 = 44 g

$$22 \text{ g CO}_{2} = 0.5 \text{ mole}$$

Volume = $0.5 \times 22.4 = 11.2$ L,So, Assertion is wrong.

Reason (R): Incorrect — That volume (22.4 L) is called molar volume, not gram molecular weight.

COMPREHENSION TYPE

Relative molecular mass or molecular weight is defined as the number of times a molecule is heavier than $\frac{1}{12}$ th the mass of C-12 isotope's atom.

RMM =
$$\frac{\text{Average mass of one molecule}}{\text{Weight of } 1/12^{\text{th}} \text{ of C-12 atom}}$$

- 15. Find the number of gram molecules of hydrogen present in 1 gram molecule of methane gas.
 - 1) 1
- 2) 2
- 3) 4
- 4) 8

Answer:3

Solution: The molecular formula of methane is CH₄, which means 1 molecule of methane contains 4 atoms of hydrogen.

1 gram molecule of methane $(CH_4) = 1$ mole of CH_4 .

Since 1 mole of $\mathrm{CH_4}$ contains 4 moles of hydrogen atoms, the number of gram molecules of hydrogen is 4.

16. 100 g o 1) SO ₂	_	s of the maxi 3) He	mum number of gram $^{\circ}$ 4) $\mathrm{H_{2}}$	molecules?
Answer:4				
Solution:The	number of gram mo	lecules (mole	s) in a given mass is ca	ılculated as:
Number of mo	oles=Mass/Molar M	ass		
To maximize	the number of mole	s, we need th	e gas with the smallest	molar mass.
Molar masses	:			
$SO_2 = 32 + 16$	$6 \times 2 = 64 \text{ g/mol}$			
$O_2 = 32 \text{ g/mo}$	1			
He = 4 g/mol				
$H_2 = 2 \text{ g/mol}$				
Hydrogen (H ₂) number of mo		nolar mass, s	o 100 g of H ₂ will give	the maximum
	any gram molecules veight of 1 gram mo		are present in 'x' g of i	it, where 'x' is
1) 4	2) 8	3) 16	4) 32	
Answer:1				
Solution:Find	the mass of 1 gran	n molecule of	SO ₂ (molar mass of SO	₂):
Molar mass o	of SO ₂ =32(S)+16×2(C	0)=64g/mol		
So, x=64g.				
Find the num	iber of gram molecu	iles (moles) of	methane (CH_4) in 64 g	3:
Molar mass o	of $CH_4 = 12(C) + 1 \times 4(H)$)=16g/mol		
Number of me	oles of CH ₄ =64/16	=4moles		
INTEGER TY	PE			
18. The numb	per of moles of water	r present in 9	0 grams of water are _	
Answer:5				
Solution:The	molar mass of wate	r (H ₂ O) is:		
Molar mass=	2×1(H)+16(O)=18g/1	mol		
The number of	of moles is calculate	d as:		
Number of m	oles=Mass/Molar M	ass=90/18=5	moles	
19. 200 c.c. o the gas is		S.T.P. has a	mass of 0.268g. Molec	ular weight of

Answer:30

Solution: The experimental value of 1 gram molecular volume of a gas is 22.4 litre at S.T.P or 22400 ml at S.T.P.

Let x grams of gas

 $x gms \rightarrow 22400$

 $0.268g. \rightarrow 200$

200x=0.268(22400)=6003.2

x=6003.2/200=30.016

MATRIX MATCHING TYPE

20. **Substance No.of Moles**

a) 2.3 gr of Na

1) 0.5

b) 3 X10²³ molecules of CO₂

2) 0.25

c) 1.12 lit of H_2 at STP

3) 0.1

d) 8 gr. of O₂

4) 0.05

Answer:a-3,b-1,c-4,d-2

Solution:

a) 2.3 gr of Na

moles=2.3/23=0.1

b) 3 X10²³ molecules of CO₂

moles=3 X10²³/6 X10²³=0.5

c) 1.12 lit of H₂ at STP

moles=0.05moles

d) 8 gr. of O₂

moles=8/32=0.25moles

LEARNER'S TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

- 1. 1 amu is equal to the mass of:
 - A) $\frac{1}{12}$ th of C 12 atom B) $\frac{1}{14}$ th of O-16 atom

C) 1g of H₂

D) $1.66 \times 10^{-23} \text{ kg}$

Answer:A

Solution:1 atomic mass unit (amu) is defined as 1/12th the mass of a carbon-12 atom.

The weight of Helium atom in grams is: 2.

A) 2

B) 4

C) 6.64×10^{-24}

D) 1.66×10^{-24}

Answer:C

Solution: Atomic mass of He = 4 amu

 $1 \text{ amu} = 1.66 \times 10^{-24} \text{g}$

 $4 \times 1.66 \times 10^{24} = 6.64 \times 10^{-24} g$

Which of the following is the smallest particle of matter that exist independently?

A) Atom

B) Molecule

C) element

D) compound

Answer:B

Solution: Molecules are the smallest particles that exist independently, not atoms.

The weight of 1 mole of calcium atoms of an element = ____ grams.

A) 40 g

B) 20 g

C) 10 g

D) 5 g

Answer:A

Solution: Atomic mass of calcium = 40 amu

1 mole = 40 g

Gram atomic weight of an element contain _____ number of atoms. 5.

A) 6.023×10^{23}

B) 3.0115×10^{23} C) 1.505×10^{23}

D) 12.046×10²³

Answer:A

Solution:By definition, 1 mole (or gram atomic weight) = Avogadro's number of atoms = 6.023×10^{23}

6. Calculate the weight of nitrogen present in 0.5 moles of NH₃.

(A) 8 g

(B) 9 g

(C) 1 g

(D) 7 g

Answer:D

Solution: 1 mole of NH₃ has 1 N atom = 14 g

 $0.5 \text{ moles} = 0.5 \times 14 = 7 \text{ g}$

7. Calculate the weight in gram of 0.9 gram atoms of zinc.

(A) 50.5 g

(B) 58.5 g (C) 56.3 g

(D) 53.2 g

Answer:B

Solution: Atomic mass of Zn = 65 g/mol

 $0.9 \times 65 = 58.5 \,\mathrm{g}$

8.	Calculate the	weight of 0.4 g	gram atoms of	carbon.		
	(A) 2.8 g	(B) 4.8 g	(C) 3.2 g	(D) 4.0	g	
Ansv	ver:B					
Solut	tion:Atomic mas	ss of C = 12 g				
0.4 ×	12 = 4.8 g					
9.	What is the v	weight of 3 gran	n atoms of su	lphur ?		
	(A) 98 g	(B) 99 g	(C) 95 g	(D) 96	g	
Answ	ver:D					
Solut	tion:Atomic mas	ss of $S = 32 g$				
3 × 3	2 = 96 g					
10.	Calculate the	weight of 2.5 1	mole of CaCO ₃	3 :-		
	(A) 200 g	(B) 230 g	(C) 240) g (I	O) 250 g	
Answ	ver:D					
Solut	tion: Molar mas	s of $CaCO3 = 40$) + 12 + 48 = 1	00 g/mol		
2.5	× 100 = 250 g					
11.	The number	of moles presen	t in 20 grams	of CaCC) ₃ is :-	
	(A) 0.1	B) 0.2	(C) 0.3	(D)	0.25	
Ansv	ver:B					
Solut	tion:Molar mass	s = 100 g/mol				
Mole	s = 20 / 100 =	0.2				
		JEE MAIN	LEVEL QUES	TIONS		
12. of mo		number of atoms t in 2 gram of hy		gram of hy	drogen to the numl	ber
	A) 1:2	B) 2:1	C) 1:1		D) 1:3	
Ansv	ver:C					
Solut	tion:1 g of hydr	ogen (H atoms):				
Mole	s of $H = 1/1 = 11$	mole				
Num	ber of H atoms	=1 x N=6.02×10	23 .			
2 g o	f hydrogen gas	(H ₂ molecules):				
Mole	s of $H_2 = 2/2 = 1$	mole.				
Num	ber of H ₂ molec	cules = 1×N=6.02	2×10 ²³ .			
	-	molecules) = 1:1				
13.	-			m carbon	ate is $(N_0 = 6.02 \times 10^{-3})$) ²³)
	A) 1.5057 × 1		2.0478×10^{24}		· ·	

C) 3.0115×10^{24}

D) 4.0956 × 10²⁴

Answer:C

Solution:Molar mass of $CaCO_3 = 40$ (Ca) + 12 (C) + 3×16 (O) = 100 g/mol.

Moles in 10 g = 10/100=0.1 mole.

Protons per CaCO₃:Ca: 20 protons, C: 6 protons, O: 8 protons each.

Total = $20+6+3\times8=50$ protons.

Total protons = $0.1 \times 50 \times 6.02 \times 10^{23} = 3.0115 \times 10^{24}$.

14. How many moles of glucose (C₆H₁₂O₆) are present in 5.4 g?

(A) 0.03

(B) 0.02

(C) 0.01

(D) 0.1

Answer:A

Solution:Molar mass of glucose = $6 \times 12 + 12 \times 1 + 6 \times 16 = 180$ g/mol.

Moles = 5.4/180=0.03

15. Calculate the number of gram atoms present in 8 g of helium :-

(A) 3

(B) 4

(C) 2

(D) 1

Answer:C

Solution: Atomic mass = 4 g/mol

Gram atoms = 8 / 4 = 2

16. 16 gram of oxygen is equal to :-

(A) 1 gram atom

(B) 0.5 gram mole

(C) 2 gram equivalents

(D) all of these

Answer:D

Solution:Gram atomic mass of O = 16 g \rightarrow 1 gram atom

Molar mass of O_2 = 32 g \rightarrow 16 g = 0.5 mol \rightarrow 0.5 gram mole

Equivalent mass of $O_2 = 32/4 = 8 \rightarrow 16/8 = 2$ gram equivalents

17. How many moles are present in 5.3 g of anhydrous sodium carbonate?

(A) 0.03

(B) 0.04

(C) 0.05

(D) 0.01

Answer:C

Solution:Moles = 5.3 / 106 = 0.05 mol

18. Calculate the number of moles present in 60 g of NaOH.

(A) 1.2

(B) 1.5

(C) 2.5

(D) 0.15

Answer:B

Solution:Moles = 60 / 40 = 1.5 mol

19. How many gram atoms are present in 256 g of O_2 ?

Answer:A

Solution: Atomic mass of O = 16

Gram atoms = 256 / 16 = 16

20. How many gram atoms are present in 60 g of carbon?

- (A) 6
- (B) 10
- (C) 16
- (D) 5

Answer:D

Solution: Atomic mass of C = 12

Gram atoms = 60 / 12 = 5

21. Calculate the number of moles present in 7.3 g of HCl.

- (A) 0.2
- (B) 0.1
- (C) 1
- (D) 0.02

Answer:A

Solution: Moles = 7.3 / 36.5 = 0.2 mol

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

22. 1 gram molecular volume of a gas is

- 1) 22.4 litres
- 2) 22.4dm³
- 3) 22400cm³ 4) 42.200cm³

Answer:1,2,3

Solution: At STP (Standard Temperature and Pressure), 1 mole (gram molecular weight) of any ideal gas occupies:22.4 litres = 22.4 dm³ = 22400 cm³

23. 12g of carbon-12 is found to contain

1) 6.023×10^{23} atoms

- 2) 12 N electrons
- 3) 18 N sub-atomic particles 4) 6.625 X10²⁴ Aoms

Answer:1,3

Solution:12 g of carbon-12 (C-12) is 1 mole of carbon.

1 mole of C-12 contains:

 6.023×10^{23} atoms (Avogadro's number, N).

6 electrons per atom \rightarrow Total electrons = 6 \times N = 6N.

Sub-atomic particles (protons + neutrons + electrons) per atom:

Protons = 6, Neutrons = 6, Electrons = $6 \rightarrow$ Total = 18 per atom.

Total sub-atomic particles in 1 mole = $18 \times N = 18N$.

STATEMENT TYPE

- 1. A and R are correct R is the correct explanation of A
- 2. A and R are correct R is not the correct explanation of A

- 3. A is correct, but R is wrong 4. A is wrong, but R is correct
- 24. **Assertion (A):** The number of atoms present in gram atomic weight of different elements are equal.

Reason (R): The number of molecules present in gram molecular weight of different substances is equal.

Answer:2

Solution: Assertion (A) is correct:

The gram atomic weight (1 mole) of any element contains Avogadro's number (6.022 \times 10²³) of atoms, regardless of the element.

Example: 1 mole of Carbon (12 g) and 1 mole of Oxygen (16 g) both contain 6.022×10^{23} atoms.

Reason (R) is correct but unrelated:

The gram molecular weight (1 mole) of any substance contains 6.022×10^{23} molecules, but this does not explain why gram atomic weights have equal numbers of atoms.

The reason talks about molecules, while the assertion is about atoms in elements (not compounds).

25. **Assertion (A):** 1 a.m.u. = 1.66×10^{-24} g or 1.66×10^{-27} kg.

Reason (R): Atomic weight has no units.

Answer:2

Solution: Assertion (A) is correct:

1 atomic mass unit (a.m.u.) is defined as 1/12th the mass of a carbon-12 atom.

Its value is:1 a.m.u. = 1.66 $\times 10^{-24}$ g or 1.66 $\times 10^{-27}$ kg.

Reason (R) is correct but unrelated:

Atomic weight (relative atomic mass) is a dimensionless quantity (no units) because it is a ratio of the average mass of an atom to 1/12th the mass of a C-12 atom. However, this does not explain why 1 a.m.u. equals the given values.

COMPREHENSION TYPE

Relative atomic mass of an element (RAM) =
$$\frac{\text{Mass of 1atom of that element}}{\frac{1}{12} \times (\text{Mass of C-12 atom})}$$

26. The total mass of 100 atoms of silicon is:

A) 2800 B) 2800 amu C)
$$28 \times 1.66 \times 10^{-22}$$
g D) Both 2 and 3

Answer:D

Solution: Atomic mass of Silicon (Si) = 28 amu (given in the periodic table).

Mass of 100 Si atoms = 100×28 amu = 2800 amu.

Conversion of amu to grams:

$$1 \text{ amu} = 1.66 \times 10^{-24} \text{ g}$$

2800 amu =
$$2800 \times 1.66 \times 10^{-24}$$
 g = $28 \times 1.66 \times 10^{-22}$ g (since $2800 = 28 \times 100$).

27. If the atomic weight of oxygen were taken as 100, then what would be molecular weight of water

Answer:C

Solution: Atomic mass of H = 1, O = 16
$$\rightarrow$$
 H₂O = 2 + 16 = 18

Now, if O is taken as 100 instead of 16, then this is a scaling ratio:

Scaling factor =
$$100 / 16 = 6.25$$

Then, molecular weight of
$$H_2O = 18 \times 6.25 = 112.5$$

INTEGER TYPE

28. Volume occupied by 4.4 g of CO, in CC is _____

Answer:2240

Solution: Molar mass of $CO_2 = 12$ (C) + 2 × 16 (O) = 44 g/mol.

Number of moles of CO_2 = Mass / Molar mass = 4.4 g / 44 g/mol = 0.1 moles.

Molar volume of a gas at STP = 22.4 L/mol = 22400 cc/mol (since 1 L = 1000 cc).

Volume occupied by 0.1 moles of $CO_2 = 0.1 \times 22400$ cc = 2240 cc.

29. Number of moles of water present in 720 grams of water is _____

Answer:40

Solution: Molar mass of $H_2O = 2 \times 1$ (H) + 16 (O) = 18 g/mol.

Number of moles of H_2O = Mass / Molar mass = 720 g / 18 g/mol = 40 moles.

MATRIX MATCHING TYPE

30. **List - I**

List - II

A) 1.008 g of H_2

1) 0.1 gram atom

B) 245 g of KClO,

2) 22.4 litre at S.T.P

C) 71 grams of $C\ell_2$

3) 12.046×10^{23} molecules

D) 10.8 grams of silver

4) 3.0115×10^{23} molecules

Answer: A-4, B-3, C-2, D-1

Solution:

A) 1.008 g of $H_2 \rightarrow \text{moles} = 1/2 = 0.5 \text{moles} = 3.0115 \times 10^{23} \text{ molecules} \rightarrow 4$

- B) 245 g of KC ℓ O $_3$ \rightarrow moles=245/122.5=2moles= $_{12.046\times10^{23}}$ molecules \rightarrow 3
- C) 71 grams of C ℓ_2 \rightarrow moles=71/71=1mole=2) 22.4 litre at S.T.P \rightarrow 2
- D) 10.8 grams of silver \rightarrow moles=10.8/108=0.1moles= 0.1 gram atom \rightarrow 1

KEY

				TEACHING	TASK				
				JEE MAIN	LEVEL QUE	STIONS			
1	. 2	3	4	5	6	7	8	9	10
2	. 1	1	1	4	3	2	1	2	4
				ADVANCE	D LEVEL Q	UESTIONS			
11	. 12	13	14	15	16	17	18	19	
В	С	2	5	3	4	1	5	30	
20									
a-3,b-1,c-	4,d-2								
				LEARNER'	S TASK				
1	. 2	3	4	5	6	7	8	9	10
Α	С	В	Α	Α	D	В	В	D	D
11	. 12	13	14	15	16	17	18	19	20
В	С	С	Α	С	D	С	В	Α	D
21	. 22	23	24	25	26	27	28	29	
Α	1,2,3	1,3	2	2	D	С	2240	40	
30									
a-3,b-1,c-	4,d-2								