15.STOICHIOMETRY MOLE CONCEPT SOLUTIONS

TEACHING TASK

JEE MAIN LEVEL QUESTIONS

1. Which of the following is a hexa-atomic mole	cule
---	------

- 1) Phosphorus
- 2) Sulphur
- 3) Ethane
- 4) Methane

Answer:None

Solution: Phosphorus (P): Exists as tetra-atomic molecules (P₄).

Sulphur (S): Exists as octa-atomic molecules (S_o).

Ethane (C_0H_6) : Has a total of eight atoms (two carbon and six hydrogen).

Methane (CH₄): Has a total of five atoms (one carbon and four hydrogen).

- 2. The no. of electrons present in one mole of Azide ion are (N_3^-)
 - 1) 21N
- 2) 20N
- 3) 22N
- 4) 43N

Answer:3

Solution:N₃ ion:

Each N atom has 7 electrons \rightarrow 3N atoms = 21 electrons.

Extra 1 electron due to -1 charge \rightarrow Total = 22 electrons per ion.

For 1 mole (N ions), total electrons = $22 \times N = 22N$.

- 3. The number of neutrons in one mole of hydrogen is
 - 1) N

- 2) 0.5National Oper3) 0g System
- 4) 2N

Answer:3

Solution: Hydrogen (1H) has no neutrons (only 1 proton).

1 mole of H atoms = N atoms \times 0 neutrons = 0 neutrons.

- 4. The total number of atoms of all elements present in 1 mole of ammonium dichromate is
 - 1) 14
- 2) 19

- 3) 6×10^{29} 4) 114×10^{23}

Answer:2

Solution:Formula unit: $(NH_4)_2Cr_2O_7 \rightarrow 2N + 8H + 2Cr + 7O = 19$ atoms.

1 mole contains 19 × N atoms.

- 5. How many moles of Barium carbonate will contain 1.5 moles of oxygen atoms
 - 1) 1 mole
- 2) 0.5 mole
- 3) 0.25 mole
- 4) 0.4 mole

Answer:2

Solution:BaCO₃ has 3 oxygen atoms per mole.

To get 1.5 moles of O, divide by 3:Moles of $BaCO_3 = \frac{1.5}{3} = 0.5$ mole

6. Total number of species present in 1 mole of potash alum in terms of avagadro

Solution: The chemical formula of potash alum is $K_2SO_4.Al_2(SO_4)_3.24H_2O$

Avogadro's number is represented by N.

Count the total number of species

Total K^+ ions:2

Total A13+ ions:2

Total SO_4^{2-} ions:3

Total H₂Omolecules: 24

Total species:2+2+3+24=32 Total species in 1 mole: 32N

7. Which of the following contain 9 X 10²³ oxygen atoms?

1) 0.25 moles of glucose

2) 0.5 moles of ethyl alcohol

3) 1.0 mole of dimethyl ether

4) 0.01 moles of sucrose

Answer:1

Solution: 0.25 moles glucose $(C_6H_{12}O_6) \rightarrow 1.5N$ O atoms

 $0.5 \text{ moles ethanol } (C_2H_5OH) \rightarrow 0.5N \text{ O atoms}$

1.0 mole dimethyl ether $(CH_3OCH_3) \rightarrow 1N O$ atoms

0.01 moles sucrose $(C_{12}H_{22}O_{11}) \rightarrow 0.11N O$ atoms

1) 0.25 moles glucose gives 9.03×10^{23} O atoms). System

How many atoms are contained in one mole of sucrose (C₁₂H₂₂O₁₁)? 8.

1) $45 \times 6.02 \times 10^{23}$ atoms/mole 2) $5 \times 6.62 \times 10^{23}$ atoms/mole

3) $5 \times 6.02 \times 10^{23}$ atoms/mole

4) None of these

Answer:1

Solution: Understand the Formula of Sucrose (C₁₂H₂₂O₁₁):

Carbon (C): 12 atoms

Hydrogen (H): 22 atoms

Oxygen (O): 11 atoms

Total atoms per molecule: 12(C)+22(H)+11(O)=45atoms.

1 mole of any substance contains Avogadro's number (N) of molecules, where $N=6.022\times10^{-23}$

For sucrose:Total atoms=45atoms/molecule×6.022×10 ²³molecules/mole.

Total atoms= $45\times6.022\times10^{23}$ atoms/mole.

A sample of phosphorus trichloride (PCl₂) contains 1.4 moles of the substance. How many atoms are there in the sample?

1) 4

2) 5.6

3) 8.431×10^{23} 4) 3.372×10^{24}

Solution: Understand the Molecular Structure of PCl₂:

Phosphorus trichloride (PCl₂) consists of: 1 phosphorus (P) atom, 3 chlorine (Cl) atoms Total atoms per molecule of PCl₃:1(P)+3(Cl)=4atoms.

Calculate Total Atoms in 1.4 Moles of PC13:

1 mole of PCl_3 contains Avogadro's number (N) of molecules, where N=6.022×10 23 Atoms per mole of PC13:

4atoms/molecule×6.022×10 ²³molecules/mole=2.4088×10 ²⁴ atoms/mole.

For 1.4 moles:1.4moles×2.4088×10 ²⁴ atoms/mole=3.372×10 ²⁴atoms.

10. The number of electrons in a mole of hydrogen molecule is

1)
$$6.02 \times 10^{23}$$

2)
$$12.046 \times 10^{23}$$

3)
$$3.0115 \times 10^{23}$$

4) Indefinite

Answer:2

Solution: Understand the Hydrogen Molecule (H₂):

Each hydrogen atom (H) has 1 electron.

A hydrogen molecule (H₂) consists of 2 hydrogen atoms, so it has:2electrons per H₂ molecule.

Calculate Electrons in 1 Mole of H2:

1 mole of any substance contains Avogadro's number (N) of molecules, where $N=6.022\times10^{-23}$

For H_2 :Total electrons=2electrons/molecule×6.022×10 23 molecules/mole.

Total electrons=12.044×10 ²³

How many years it would take to spend Avogadro's number of rupees at the 11. rate of 10 lac rupees per second?

1)
$$1.9090 \times 10^{15}$$
 year

2)
$$1.9099 \times 10^{10}$$
 year

3)
$$1.9800 \times 10^5$$
 year

3)
$$1.9800 \times 10^5$$
 year 4) 1.978×10^{20} year

Answer:2

Solution: Given Data:

Avogadro's number (N)=6.022×10 ²³ rupees.

Spending rate = 10 ⁶rupees/second.

Time (seconds) =
$$\frac{Total rupees}{Rate} = \frac{6.023 \times 10^{23}}{10^6} = 6.023 \times 10^{17} Seconds$$

Convert Seconds to Years:

1 year = $60\times60\times24\times365$ seconds = 3.154×10^{-7} seconds

Time (years) =
$$\frac{6.022 \times 10^{17}}{3.154 \times 10^7} \approx 1.909 \times 10^{10} \text{ years}$$

12) Maximum number of atoms are present in

- 1) 11.2 lit. of SO₂ at STP
- 2) 22.4 lit. of Helium at STP
- 3) 22.4 lit of hydrogen
- 4) 11.2 litres of methane at STP

Solution: At STP (Standard Temperature and Pressure):

1 mole of any gas occupies 22.4 L.

Number of atoms = Number of molecules \times atoms per molecule.

Option 1: 11.2 L of SO₂

Moles of $SO_2 = 11.2/22.4=0.5$ mole.

 SO_2 molecule: 1 S + 2 O = 3 atoms/molecule.

Total atoms = $0.5 \times 6.022 \times 10^{23} \times 3 = 9.033 \times 10^{23}$.

Option 2: 22.4 L of He

Moles of He = 22.4/22.4=1 mole.

He is monatomic: 1 atom/molecule.

Total atoms = $1\times6.022\times10^{23}\times1=6.022\times10^{23}$

Option 3: 22.4 L of H2 Moles of $H_2 = 1$ mole.

H₂ molecule: 2 atoms/molecule.

Total atoms = $1 \times 6.022 \times 10^{23} \times 2 = 12.044 \times 10^{23}$

Option 4: 11.2 L of CH4Moles of $CH_4 = 0.5 \text{ mole.}$

 CH_4 molecule: 1 C + 4 H = 5 atoms/molecule.

Total atoms = $0.5 \times 6.022 \times 10^{23} \times 5 = 15.055 \times 10^{23}$

Option 4 (11.2 L of CH₄) has the maximum number of atoms.

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

- 11. Which of the following contains same number of atoms
 - 1) 1 mole of H_2 2) 2mole of CO_2 3) 2 mole of He 4) 0.5 mole of O_3

Answer:1,3

Solution:1) 1 mole of H₂=2 atoms

Total Atoms=2(N)=2N

2) 2mole of CO_2 =1+2=3 Atoms

Total atoms=3x2xN=6N

3) 2 mole of He=2(1)=2 atom

Total atoms =2xN=2N

4) 0.5 mole of $O_3 = 0.5 \times 3 = 1.5 \text{ atoms}$

Total atoms=1.5N

Option 1 (1 mole of H₂) and Option 3 (2 mole of He) both contain 2N atoms.

- 12. The gas having same number of molecules as 0.5 mole of oxygen is
- 1) 0.5 moles of $\mathrm{O_3}$ 2) 0.5 moles of $\mathrm{SO_3}$ 3) 0.5 mole of $\mathrm{SO_2}$ 4) 0.5 mole of hydrogen

Answer: 1,2,3,4

Solution: Avogadro's Law: Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.

Moles \rightarrow Molecules: Depends only on the number of moles, not the gas identity.

STATEMENT TYPE

- 1. A and R are correct R is the correct explanation of A
- 2. A and R are correct R is not the correct explanation of A
- 3. A is correct, but R is wrong
- 4. A is wrong, but R is correct
- 13. Assertion (A): Mole is equal to 6.022×10^{23} particles.

Reason (R): 6.022 × 10²³ particles is known as avagadro number

Answer:1

Solution: Assertion: True — By definition, 1 mole of any substance contains 6.022 × 10²³ entities (atoms, molecules, ions, etc.)

Reason: True — This is the definition of Avogadro's number.

COMPREHENSION TYPE

14. The numbers of atoms present in 0.166 mooles of ozone is

$$3) \frac{N_A}{6}$$

4)
$$\frac{N_A}{2}$$

Answer:4

Solution: We are given: Amount of ozone $(O_2) = 0.166$ moles

We need to find the number of atoms, not molecules.

Let N_A = Avogadro's number = 6.022×10^{23}

1 molecule of ozone (O3) contains 3 atoms of oxygen.

So,1 mole of O_3 molecules contains:1 mole×3×N $_A$ =3N $_A$ atoms.

Therefore, "0.166 moles of O_3 contains: 0.166×3 N_A =0.498 N_A = $N_A/2$

- 15. Which of the following is a reasonable value for the numbers of atoms in 0.25 moles of helium?
 - 1) 0.25
- 2) 4.0
- 3) 4.1×10^{-23} 4) 1.5×10^{23}

Answer:4

Solution: Number of atoms = Number of moles × Avogadro's number (N).

Avogadro's number (N) =6.022×10 ²³atoms/mole.

Helium (He) is a monatomic gas (1 atom per molecule).

Calculation:

Number of atoms=0.25moles×6.022×10 ²³atoms/mole=1.5055×10 ²³atoms.

INTEGER TYPE

16. The number of oxygen atoms present in 0.25 moles of calcium carbonate

Answer: 4.5165×10²³

Solution:Formula of Calcium Carbonate: CaCO₃

Contains 3 oxygen atoms per molecule.

Total Oxygen Atoms:

Number of atoms=Moles×Avogadro's number×Atoms per molecule

=0.25moles×6.022×10 ²³×3=4.5165×10²³ oxygen atoms

17. 1 mole of Sulphuric acid contains _____ moles of hydrogen atoms

Answer:2

Solution:Formula of Sulphuric Acid: H₂SO₄

Contains 2 hydrogen atoms per molecule.

Moles of Hydrogen Atoms:

1mole H₂SO₄×2H atoms/molecule=2moles of H atoms.

MATRIX MATCHING TYPE

18.Answer:1-C,2-A,3-D,4-B

Column-I (For 1 mole)

Column-II

1) Nitric oxide

- C) 1.204×10^{24} atoms
- 2) Hydronium ion
- A) 2.408×10^{24} atoms

D) 2.770×10^{25} electrons

3) Silver ions4) Glucose

B) 1.445×10^{25} atoms

Solution:1) Nitric oxide (NO)

Formula: NO \rightarrow 1 N + 1 O = 2 atoms/molecule.

Total atoms in 1 mole:2×6.022×10 ²³=1.204×10 ²⁴atoms.

2) Hydronium ion (H₃O⁺)

Formula: $H_3O^+ \rightarrow 3 H + 1 O = 4$ atoms/ion.

Total atoms in 1 mole: $4\times6.022\times10^{-23} = 2.408\times10^{-24}$ atoms.

3) Ag⁺ has 46 electrons (Ag atomic number = 47, minus 1 lost electron).

Total electrons:46×6.022×10 ²³=2.770×10 ²⁵electrons.

Glucose (C₆H₁₂O₆)

Formula: $C_6H_{12}O_6 \rightarrow 6 C + 12 H + 6 O = 24 \text{ atoms/molecule.}$

Total atoms in 1 mole: $24 \times 6.022 \times 10^{23} = 1.445 \times 10^{25}$ atoms

LEARNER'S TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

- 1. Atomicity is the number of
 - 1) Protons present in the atom 2) Neutrons present in the atom
 - 3) Atoms present in the molecule 4) Atoms present in 1 gram mole of a substance

Answer:3

Solution: Atomicity refers to the number of atoms in one molecule of a substance (e.g., $O_2 \rightarrow \text{atomicity} = 2$).

- Which of the following is the smallest particle of matter that exist 2. independently?
- A) Atom
- B) Molecule C) element
- D) compound

Answer:B

Solution: Molecules (e.g., O2, H2O) can exist independently, while atoms (e.g., He, Ne) may or may not.

- 3. Which of the following is correct match
 - 1) Atomic hydrogen 6.022×10^{23} atoms 2) Zinc vapour 6.022×10^{23} atoms
 - 3) Ammonia 6.023×10^{23} molecules 4) All the above

Answer:4

Solution:1 mole of any substance contains Avogadro's number (6.022 × 10²³) of particles:

Atomic hydrogen (H): 6.022 × 10²³ atoms.

Zinc vapour (Zn): 6.022×10^{23} atoms.

Ammonia (NH₂): 6.022 × 10²³ molecules.

4. Which of the following is the correct formula to calculate number of moles

1) No. of moles =
$$\frac{\text{Number of particles}}{6.023 \times 10^{23}}$$

- 2) No. of moles = 6.023×10^{23} / Number of particles
- 3) Both A & B
- 4) None

Answer: 1

Solution: No. of moles =
$$\frac{\text{Number of particles}}{6.023 \times 10^{23}}$$

- 5. Number of atoms present is one mole of Hydrogen gas
 - 1) 1 mole
- 2) 2 moles
- 3) 3 moles
- 4) 4 moles

Answer:2

Solution: H_2 has 2 atoms/molecule \rightarrow 1 mole H_2 = 2 × 6.022 × 10²³ atoms = 2 moles of atoms.

- 6. Number of electrons present in 1 mole of sodium ion
 - 1) 10 moles
- 2) 11 moles
- 3) 12 moles
- 4) 9 moles

Answer:1

Solution: Na (atomic number 11) loses 1 electron to form Na⁺ \rightarrow 10 electrons/ion. 1 mole Na⁺ = $10 \times 6.022 \times 10^{23}$ electrons = 10 moles of electrons.

7. Number of atoms present in 2 moles of Hydrogen sulphide

1) 12.046×10^{23} 2) 18.069×10^{23} 3) 6.023×10^{23} 4) 3.0115×10^{23}

Answer:2

Solution: H_0S has 3 atoms/molecule \rightarrow 2 moles $H_0S = 2 \times 3 \times 6.022 \times 10^{23} == 3.613$ \times 10²4 atoms.

Closest option: 18.069×10^{23} (typo; likely meant 3.613×10^{24}).

Number of moles of sub atomic particles present in 1 mole of Hydrogen atoms

1) 0

2) 1

3) 2

4) 4

Answer:3

Solution:Hydrogen atom (1H): 1 proton + 1 electron = 2 subatomic particles/atom. 1 mole H = $2 \times 6.022 \times 10^{23}$ particles = 2 moles of subatomic particles.

9. The number of revolving sub atomic particles in 1 mole of helium is

1) 0

2) 2

3) 1

4) 4

Answer:2

Solution: Helium (He): 2 electrons/atom (revolving) + 2 protons/neutrons (nonrevolving).

1 mole He = $2 \times 6.022 \times 10^{23}$ electrons = 2 moles of revolving particles.

if 10²³ molecules are removed from 1 mole of NO₂ the number of molecules 10. remaining are

1) 6.023

2) 5.023 nal Opera) 5.023 x 10¹ 4) 5.023 x 10²³

Answer:4

Solution:1 mole $NO_2 = 6.022 \times 10^{23}$ molecules.

Remaining molecules = $6.022 \times 10^{23} - 1 \times 10^{23} = 5.022 \times 10^{23}$.

JEE MAIN LEVEL QUESTIONS

11. One mole of CO₂ contains

a) 6.02×10^{23} atoms of C

b) 6.02×10²³ atoms of O

c) 18.1×10^{23} molecules of CO_2

d) 3 gram of carbon.

Answer:A

Solution: Understand 1 Mole of CO₂

Avogadro's number (N)=6.022×10 ²³ entities/mole.

1 mole of CO₂ contains:6.022×10 ²³ molecules of CO₂

1 atom of C and 2 atoms of O per molecule.

- 12. Which of the following contains maximum number of atoms?
 - a) 2.0 mole of S_{\circ} .

- b) 6.0 mole of S
- c) 5.5 mole of SO₂.
- d) 4 moles of CO

Answer:C

Solution:a) S8: 8 atoms/molecule $\rightarrow 2 \times 8 \times 6.022 \times 10^{23} = 9.635 \times 10^{24}$ atoms.

- b) S: 1 atom/molecule \rightarrow 6 × 6.022 × 10²³ = 3.613 × 10²⁴ atoms.
- c) SO2: 3 atoms/molecule $\rightarrow 5.5 \times 3 \times 6.022 \times 10^{23} = 9.936 \times 10^{24}$ atoms.
- d) CO: 2 atoms/molecule \rightarrow 4 × 2 × 6.022 × 10²³ = 4.818 × 10²⁴ atoms.
- 13. 1 mole of ${}^{14}_{7}$ N⁻³ ions contains
 - 1) $7 \times 6.023 \times 10^{23}$ electrons
- 2) $7 \times 6.023 \times 10^{23}$ protons
- 3) $7 \times 6.023 \times 10^{23}$ neutrons
- 4) $14 \times 6.023 \times 10^{23}$ protons

Answer:2,3

Solution: Atomic number (Z) = $7 \rightarrow 7$ protons

Mass number (A) = 14

Neutrons = 14 - 7 = 7 neutrons

Charge = 3- \rightarrow means 3 extra electrons than protons

So, electrons = 7 + 3 = 10 electrons

Avogadro's number $N_A = 6.022 \times 10^{-23}$

Number of:Electrons = $10N_{A}$ ational Operating System

Protons = $7N_A$

Neutrons = $7N_{\Lambda}$

- 14. One mole of sodium represents
 - 1) 6.02×10^{23} atoms of sodium
- 2) 6.02×10²³ molecules of sodium

3) Both A & B

4) None

Answer:1

Solution: 1 mole of any substance, be it atoms/molecules /ions or even subatomic particles like

electrons, protons or neutrons, they all contain Avogadro Number 6.02×10^{23} particles.

So, 1 mole of sodium = 6.02×10^{23} atoms of sodium

or, 1 mole of sodium =23 g, which is its atomic mass per mole.

- 15. The charge present on 1 mole electrons is
 - 1) 96500 Coulombs 2) Coulomb
- 3) 1.60×10⁻¹⁹ C
- 4) 0.1 Faraday

Solution: 1 mole of electrons = 1 Faraday = 96,500 C.

- 16) Which of the following contians less number of molecules
 - 1) 0.25 moles of CO₂

2) 0.5 mole of SO₂

3) 1 mole of hydrogen

4) 1 mole of helium

Answer:1

Solution: 1 Molecules = moles \times Avogadro's number (N).

 $0.25 \text{ mol CO}_2 = 0.25 \text{N}.$

Others: 0.5N (SO₂), 1N (H₂/He).

17) Maximum number of electrons are present in

1) 1 mole of SO₂

2) 0.2 moles of NH₃

3) 1.5 moles of oxygen

4) 2 mole atoms of of sulphur

Answer: 1,4

Solution:SO₂: 32 e⁻(16 per S + 8 per O × 2) \rightarrow 1 × 32 × N = 32N.

 NH_3 : 10 e⁻ \rightarrow 0.2 × 10 × N = 2N.

 O_{2} : 16 e⁻ \rightarrow 1.5 × 16 × N = 24N.

S (atomic): $16 e^{-} \rightarrow 2 \times 16 \times N = 32N$.

18) Atomicity of oleum $(H_2S_2O_7)$ is

1) 11

2) 8 ducational apperating system

Answer:1

Solution: Atomicity of oleum $(H_2S_2O_7)=2$ H + 2 S + 7 O = 11 atoms.

19) The number of moles present in 1.505 x 10^{23} molecules of $\rm H_2SO_4$ is

1) 2.5

2) 0.5

3) 4

4) 0.25

Answer:4

Solution: Moles = $\frac{1.505 \times 10^{23}}{6.023 \times 10^{23}} = 0.25$.

20) The number of carbon atoms present in 0.1 moles of carbon monoxide are

1) 3.01×10^{23} 2) 3.01×0^{22} 3) 6.02×10^{23} 4) 6.02×10^{22}

Answer:4

Solution:CO: 1 C/molecule $\rightarrow 0.1 \times 6.022 \times 10^{23} = 6.022 \times 10^{22}$ atoms.

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

- 21) A pair of gasses having same number of atoms are
 - 1) 1 mole of H_2 2) 2 moles of He 3) 0.25 moles of CO_2 4) 1 mole of N_2

Answer: 1, 2, 4

Solution: Calculate Total Atoms for Each Option:

Avogadro's number (N) = 6.022×10 ²³entities/mole.

Option 1: 1 mole of H₂

H₂ is diatomic (2 atoms/molecule).

Total atoms = $1 \times 2 \times N = 2N$.

Option 2: 2 moles of He

He is monatomic (1 atom/molecule).

Total atoms = $2 \times 1 \times N = 2N$.

Option 3: 0.25 moles of CO₂

CO₂ has 3 atoms/molecule (1 C + 2 O).

Total atoms = $0.25 \times 3 \times N = 0.75N$.

STATEMENT TYPE

22. Assertion (A): 1 mole of magnesium ion contains 12 moles of protons Reason (R): Mole is equal to 6.022 × 10²³ particles.

Answer:2

Solution: Evaluate Assertion (A): onal Operating System

Magnesium ion (Mg^{2+}) :

Atomic number of Mg = $12 \rightarrow 12$ protons per ion.

1 mole of $Mg^{2+} = 12 \times 6.022 \times 10^{23}$ protons = 12 moles of protons.

Conclusion: Assertion (A) is correct.

Evaluate Reason (R):

Definition of mole:

1 mole = 6.022×10 ²³particles (Avogadro's number).

Conclusion: Reason (R) is correct.

INTEGER TYPE

23. The number of moles of elctrons in 2 moles of Aluminium ions is _____

Answer:20

Solution: Atomic number of Al = $13 \rightarrow$ Neutral Al has 13 electrons.

 Al^{3+} loses 3 electrons $\rightarrow 10$ electrons per ion.

Total Electrons in 2 Moles of Al³⁺:

Electrons=2moles Al3+×10 electrons/ion=20moles of electrons

24. 1 mole of protons charge in faraday is _____

Answer:1

Solution: Charge of 1 Proton:

Proton charge = $+1.602 \times 10^{-19}$ C.

Charge of 1 Mole of Protons:

1mole protons×1.602×10 $^{\text{-}19}\text{C/proton}\times6.022\times10$ $^{\text{23}}\text{protons/}$

mole=96,485C=1Faraday (F).

MATRIX MATCHING TYPE

25)Answer:A-4,B-3,C-2,D-1

List - I List - II

(No. of moles of compound) (No. of moles of the oxygen atoms)

A) 1.5 Moles of BaCO₃ 4) 4.5

B) 2 moles of H_2SO_4 3) 8

C) 2.5 moles of ZnCO₃ 2) 7.5

D) 0.5 mole of glucose 1) 3

Solution:

A) 1.5 Moles of BaCO₃

Total moles of O: 1.5×3=4.5 ational Operating System

B) 2 moles of H₂SO₄

Total moles of O: 2×4=8

C) 2.5 moles of ZnCO₃

Total moles of O: $2.5 \times 3 = 7.5$

D) 0.5 mole of glucose($C_6H_{12}O_6$) Total moles of O: 0.5×6=3

KEY

					TEACHING	TASK				
					JEE MAIN LEVEL QUESTIONS					
	1	2	3	4	5	6	7	8	9	10
none		3	3	2	2	4	1	1	4	2
	11	12								
	2	4								
					ADVANCED LEVEL QUESTIONS					
	11	12	13	14	15	16	17	18		
1,3		1,2,3,4	1	4	4	4.5165×10	2	1-C,2-A,3-	D,4-B	
					LEARNER'S	S TASK				
					CONCEPT	NS (CUQ's)				
	1	2	3	4	5	6	7	8	9	10
	3	В	4	1	2	1	2	3	2	4
				JEE MA <mark>IN</mark> L <mark>EVEL QU</mark> ESTIONS						
	11	12	13	14	15	16	17	18	19	20
Α		С	2,3	1	1	1	1,4	1	4	4
					ADVANCE	D LEVEL Q	UESTIONS			
	21	22	23	24	25					
1,2,4		2	20	1	A-4,B-3,C-	2,D-1				

