4. STOICHIOMETRY ATOMIC WEIGHT, MOLECULAR WEIGHT AND GMV SOLUTIONS

TEACHING TASK

JEE MAIN LEVEL QUESTIONS

Calculate the number of Cl⁻ and Ca²⁺ ions in 222 g anhydrous CaCl₂
 1) 3N, 6N
 2) 4N, 2N
 3) 10N, 5N
 4)6N,3N

Answer:2

Solution:Molar mass of CaCl₂ = $40 + (35.5 \times 2) = 111 \text{ g/mol}$

Moles = 222 / 111 = 2 moles

1 mole of CaClgives:

 $1 \text{ Ca}^{2+} \text{ ion } \rightarrow 2 \text{ moles} = 2 \times \text{N} = 2\text{N}$

2 Cl⁻ ions \rightarrow 2 × 2 × N = 4N

2. Which one of the following pairs of gases contain the same number of molecules?

- 1) 16 g of O_2 and 14 g of N_2 2) 8 g of O_2 and 22 g of CO_2
- 3) 28 g of N_2 and 22 g of CO_2 4) 32 g of O_2 and 32 g of N_2

Answer:1

Solution: Moles of $O_2 = 16 / 32 = 0.5$

Moles of $N_2 = 14 / 28 = 0.5$

Same moles \rightarrow Same number of molecules (Avogadro's Law).

3. The total number of gm-atoms of SO_2Cl_2 in 13.5g of sulphuryl chloride is

1) 0.1 2) 0.2 3) 0.3 4) 0.4

Answer:1

Solution:Molar mass of $SO_2Cl_2 = 32 + 32 + 71 = 135$ g/mol

Moles = 13.5 / 135 = 0.1 moles (gm-atoms).

4. How many atoms are contained in one mole of sucrose (C $_{12}H_{22}O_{11}$)?

1) $45 \times 6.02 \times 10^{23}$ atoms/mole	2) $5 \times 6.62 \times 10^{23}$ atoms/mole
---	--

3) $5 \times 6.02 \times 10^{23}$ atoms/mole 4) None of these

Answer:1

Solution:Sucrose has 45 atoms per molecule (12 C + 22 H + 11 O).

Total atoms = $45 \times \text{Avogadro's number} (6.02 \times 10^{23}).$

5. A sample of phosphorus trichloride (PC) contains 1.4 moles of the substance. How many atoms are there in the sample?

```
1) 4 2) 5.6 3) 8.431 \times 10^{23} 4) 3.372 \times 10^{24}
```

Answer:4

Solution: PCl_3 has 4 atoms per molecule (1 P + 3 Cl).

Total atoms = $1.4 \times 4 \times 6.02 \times 10^{23} = 3.372 \times 10^{24}$.

6. The molecular weight of hydrogen peroxide is 34. The weight of 1 mole of $\rm H_2O_2$ is

1) 34 a.m.u 2) 34 mg 3) 34 g 4) 34 kg

Answer:3

```
Solution:1 mole = molar mass in grams \rightarrow 34 g.
```

7. The number of electrons in a mole of hydrogen molecule is

```
1) 6.02 \times 10^{23} 2) 12.046 \times 10^{23} 3) 3.0115 \times 10^{23} 4) Indefinite
```

Answer:2

Solution: H_2 has 2 electrons per molecule.

Total electrons = $2 \times 6.02 \times 10^{23} = 12.04 \times 10^{23}$.

8. The largest number of molecules are present in

1) 34g of water 2) 28g of CO_2 3) 46g of CH_3OH 4) 54g of N_2O_5

Answer:1

Solution:Moles:

 $H_2O: 34 / 18 = 1.89$ $CO_2: 28 / 44 = 0.64$ $CH_3OH: 46 / 32 = 1.44$ $N_2O_5: 54 / 108 = 0.5$

Highest moles \rightarrow Most molecules.

9. The number of moles of sodium oxide in 620 g of it is

1) 1 mole 2) 10 moles 3) 18 moles 4) 100 moles

Answer:2

Solution:Molar mass of $Na_2O = (2 \times 23) + 16 = 62 \text{ g/mol}$

Moles = 620 / 62 = 10 moles.

10. Calculate the number of atoms of oxygen present in 88 g CO $_2$. What would be the weight of CO having the same number of oxygen atoms?

1) 224 g,6.023 × 10232) 222 g, 12.056 × 10233) 120 g,18.023 × 10234) 112 g, 24.02 × 1023

Answer:4

Solution:Step 1: CO₂

Molar mass = 44 g

Moles = 88 / 44 = 2 mol

Each CO $_2$ has 2 O atoms, so total O atoms = 2 mol × 2 × 6.022×10²³= 2.4088 × 10^{24}

Step 2: CO

Each CO has 1 O atom, so to get same number of O atoms, need 2.4088×10^{24} CO molecules = 4 moles

Mass of CO = 4 mol \times 28 g = 112 g

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

11. The mass of one atom of an unknown element is $4 \times 1.66 \times 10^{\circ}$ g. The element is:

A) Hydrogen B) Helium C) Oxygen D) Sulphur

Answer:B

Solution:Mass of 1 atomic mass unit (amu) = 1.66×10^{-24} g

Given mass = $4 \times 1.66 \times 10^{-24}$ g

Atomic mass = 4 amu \rightarrow Helium

12. The weight of ammonia molecule in grams is:

A) 17a.m.u B) 17 × 10⁻³

C) $17 \times 1.66 \times 10^{-24}$ g D) $17 \times 1.66 \times 10^{-27}$ Kg

Answer:C

Solution: Molecular mass of $NH_3 = 14$ (N) + 3 (H) = 17 a.m.u.

Conversion to grams:1a.m.u=1.66×10⁻²⁴g

Weight in grams = $17 \times 1.66 \times 10^{-24}$ g

STATEMENT TYPE

- 1. A and R are correct R is the correct explanation of A
- 2. A and R are correct R is not the correct explanation of A
- 3. A is correct, but R is wrong 4. A is wrong, but R is correct
- 13. **Assertion (A):** a.m.u. is the smallest unit of mass used to measure the masses of atoms and subatomic particles.

Reason (R): 1 a.m.u.= 1.67 x 10⁻²⁴g

Answer:2

Solution:Assertion (A):a.m.u. is the smallest unit of mass used to measure the masses of atoms and subatomic particles.

Correct — a.m.u. (atomic mass unit) is used for atomic and subatomic particles.

Reason (R):1 a.m.u. = 1.67×10^{-24} g

Correct (approximate) — actual value is 1.66×10^4 g, but 1.67×10^{24} g is acceptable in rounded form.

Reason (R) provides the numerical value of 1 a.m.u in grams. This value does not explain why a.m.u. is the smallest unit used for atoms and subatomic particles. The reason for using a.m.u. is the extremely small scale of atomic masses, not its specific conversion to grams.

14. Assertion (A): Volume of 22 grof CO_2 is 22.4 lit at STP.

Reason (R):Volume occupied by 1 mole of a gas at STP is called gram molecular weight.

Answer:5

Solution:Assertion (A): Incorrect — 22 g of CO_2 is not 1 mole.

Molar mass of CO_2 = 44 g

 $22 \text{ g CO}_2 = 0.5 \text{ mole}$

Volume = $0.5 \times 22.4 = 11.2$ L,So, Assertion is wrong.

Reason (R): Incorrect — That volume (22.4 L) is called molar volume, not gram molecular weight.

COMPREHENSION TYPE

Relative molecular mass or molecular weight is defined as the number of times a molecule is heavier than $\frac{1}{12}$ th the mass of C-12 isotope's atom.

 $RMM = \frac{Averagemassofonemolecule}{Weightof11/2of C-12atom}$

15. Find the number of gram molecules of hydrogen present in 1 gram molecule of methane gas.

1) 1 2) 2 3) 4 4) 8

Answer:3

Solution: The molecular formula of methane is CH $_{\rm 4},$ which means 1 molecule of methane contains 4 atoms of hydrogen.

1 gram molecule of methane (CH₄) = 1 mole of CH₄.

Since 1 mole of CH $_4$ contains 4 moles of hydrogen atoms, the number of gram molecules of hydrogen is 4.

16. 100 g of which gas contains of the maximum number of gram molecules? 1) SO₂ 2) O₂ 3) He 4) H₂

Answer:4

Solution:The number of gram molecules (moles) in a given mass is calculated as:

Number of moles=Mass/Molar Mass

To maximize the number of moles, we need the gas with the smallest molar mass. Molar masses:

 $SO_2 = 32 + 16 \times 2 = 64 \text{ g/mol}$ $O_2 = 32 \text{ g/mol}$ He = 4 g/mol $H_2 = 2 \text{ g/mol}$

Hydrogen (H $_{\rm 2}\!)$ has the smallest molar mass, so 100 g of H $_{\rm 2}$ will give the maximum number of moles

17. How many gram molecules of methane are present in 'x' g of it, where 'x' is equal to the weight of 1 gram molecule of SO $_2$?

1) 4 2) 8 3) 16 4) 32

Answer:1

Solution:Find the mass of 1 gram molecule of SO₂ (molar mass of SO₂):

Molar mass of SO $_2$ =32(S)+16×2(O)=64g/mol

So, x=64g.

Find the number of gram molecules (moles) of methane (CH $_4$) in 64 g:

Molar mass of CH $_4$ =12(C)+1×4(H)=16g/mol

Number of moles of $CH_4=64/16=4$ moles

INTEGER TYPE

18. The number of moles of water present in 90 grams of water are _____

Answer:5

Solution: The molar mass of water (H₂O) is:

Molar mass= $2 \times 1(H) + 16(O) = 18g/mol$

The number of moles is calculated as:

Number of moles=Mass/Molar Mass=90/18=5moles

19. 200 c.c. of a gas measured at S.T.P. has a mass of 0.268g. Molecular weight of the gas is _____

Answer:30

Solution:The experimental value of 1gram molecular volume of a gas is 22.4 litre at S.T.P or 22400 ml at S.T.P.

Let x grams of gas

x gms→22400 0.268g.→200 200x=0.268(22400)=6003.2 x=6003.2/200=30.016

MATRIX MATCHING TYPE

tance 1	No.of Moles		
of Na	1) 0.5		
³ molecules of CO_2	2) 0.25		
of H_2 at STP	3) 0.1		
O_2	4) 0.05		
	of Na 3 molecules of CO $_2$ of H $_2$ at STP		

Answer:a-3,b-1,c-4,d-2

Solution:

a) 2.3 gr of Na moles=2.3/23=0.1b) 3 X10²³ molecules of CO₂ moles=3 X10²³/6 X10²³=0.5 c) 1.12 lit of H₂ at STP moles=0.05moles d) 8 gr. of O₂ moles=8/32=0.25moles

LEARNER'S TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

1. 1 amu is equal to the mass of:

A) $\frac{1}{12}$ th of C - 12 atom B) $\frac{1}{14}$ th of O-16 atom C) 1g of H₂ D) 1.66 × 10⁻²³ kg

Answer:A

Solution:1 atomic mass unit (amu) is defined as 1/12th the mass of a carbon-12 atom.

	A) 2	B) 4	C) 6.64 × 1	0 ⁻²⁴ D) 1.66 × 10 ⁻²
Answ	ver:C			
Solut	tion: Atomic m	ass of He = 4 a	mu	
1 an	$hu = 1.66 \times 10^{-1}$	⁻²⁴ g		
	$1.66 \times 10?^{2}4 =$	2		
3. inder	Which of the pendently?	following is th	e smallest partic	le of matter that exist
A) At	om B) M	olecule	C) element	D) compound
Answ	ver:B			
Solut	tion: Molecules	are the smalle	est particles that	exist independently, not a
4.	The weight o	of 1 mole of cal	cium atoms of a	n element = grams.
	A) 40 g	B) 20 g	C) 10 g	D) 5 g
Answ	ver:A			
Solut	tion:Atomic ma	ss of calcium	= 40 amu	
1 mo	le = 40 g			
5.	Gram atomic	weight of an e	lement contain _	number of atoms.
	A) 6.023 × 10) ²³ B) 3.011	5×10^{23} C) 1.50	05 × 10 ²³ D) 12.046×1
Answ	ver:A			
	tion:By definiti s = 6.023×10		gram atomic wei	ght) = Avogadro's number
6.	Calculate the	weight of nitr	ogen present in (0.5 moles of NH ₃ .
	(A) 8 g	(B) 9 g	(C) 1 g	(D) 7 g
Answ	ver:D			
Solut	tion: 1 mole of	NH ₃ has 1 N a	tom = 14 g	
0.5 1	moles = 0.5×1	4 = 7 g		
7.	Calculate the	weight in grai	n of 0.9 gram at	oms of zinc.
	(A) 50.5 g	(B) 58.5 g	(C) 56.3 g	(D) 53.2 g
Answ	ver:B			
Solut	tion: Atomic m	ass of Zn = 65	g/mol	
0.9 >	× 65 = 58.5 g			
8.	Calculate the	weight of 0.4	gram atoms of c	arbon.
	(A) 2.8 g	(B) 4.8 g	(C) 3.2 g	(D) 4.0 g
Answ	ver:B			

 $0.4 \times 12 = 4.8$ g 9. What is the weight of 3 gram atoms of sulphur? (A) 98 g (B) 99 g (C) 95 g (D) 96 g Answer:D Solution: Atomic mass of S = 32 g $3 \times 32 = 96$ g 10. Calculate the weight of 2.5 mole of CaCO $_3$:-(B) 230 g (C) 240 g (D) 250 g (A) 200 g Answer:D Solution: Molar mass of CaCO3 = 40 + 12 + 48 = 100 g/mol $2.5 \times 100 = 250$ g The number of moles present in 20 grams of CaCO 11. 3 is :-(C) 0.3 (A) 0.1 (B) 0.2 (D) 0.25 **Answer:B** Solution:Molar mass = 100 g/molMoles = 20 / 100 = 0.2JEE MAIN LEVEL QUESTIONS

12. The ratio of number of atoms present in 1 gram of hydrogen to the number of molecules present in 2 gram of hydrogen is :

A) 1 : 2 B) 2 : 1 C) 1 : 1 D) 1 : 3

Answer:C

Solution:1 g of hydrogen (H atoms):

Moles of H = 1/1=1 mole

Number of H atoms =1 x N= 6.02×10^{-23} .

2 g of hydrogen gas (H $_2$ molecules):

Moles of $H_2 = 2/2=1$ mole.

Number of H₂ molecules = $1 \times N = 6.02 \times 10^{-23}$.

Ratio (H atoms : H_2 molecules) = 1:1.

13. The total number of protons in 10 g of calcium carbonate is ($\mathbb{N} = 6.02 \times 10^{23}$)

A) 1.5057×10^{24} B) 2.0478×10^{24}

C) 3.0115×10^{24} D) 4.0956×10^{24}

Answer:C

Solution:Molar mass of $CaCO_3 = 40$ (Ca) + 12 (C) + 3×16 (O) = 100 g/mol. Moles in 10 g = 10/100=0.1 mole. Protons per CaCO₃:Ca: 20 protons, C: 6 protons, O: 8 protons each. Total = $20+6+3\times8=50$ protons.

Total protons = $0.1 \times 50 \times 6.02 \times 10^{23} = 3.0115 \times 10^{24}$.

14.How many moles of glucose (C
(A) 0.03 (B) 0.02 (C) 0.01 (D) 0.1

Answer:A

Solution:Molar mass of glucose = $6 \times 12 + 12 \times 1 + 6 \times 16 = 180$ g/mol.

Moles = 5.4/180=0.03

15. Calculate the number of gram atoms present in 8 g of helium :-(A) 3 (B) 4 (C) 2 (D) 1

Answer:C

Solution:Atomic mass = 4 g/mol

Gram atoms = 8 / 4 = 2

16.	16 gram of oxygen is equal to :-				
	(A) 1 gram atom	(B) 0.5 gram mole			
	(C) 2 gram equivalents	(D) all of these			

(C) 2 gram equivalents (D) all of these

Answer:D

Solution:Gram atomic mass of O = 16 g \rightarrow 1 gram atom

Molar mass of $O_2 = 32 \text{ g} \rightarrow 16 \text{ g} = 0.5 \text{ mol} \rightarrow 0.5 \text{ gram mole}$

Equivalent mass of $O_2 = 32/4 = 8 \rightarrow 16/8 = 2$ gram equivalents

17. How many moles are present in 5.3 g of anhydrous sodium carbonate ?(A) 0.03 (B) 0.04 (C) 0.05 (D) 0.01

Answer:C

Solution:Moles = 5.3 / 106 = 0.05 mol

18. Calculate the number of moles present in 60 g of NaOH.

```
(A) 1.2 (B) 1.5 (C) 2.5 (D) 0.15
```

Answer:B

Solution: Moles = 60 / 40 = 1.5 mol

 19. How many gram atoms are present in 256 g of O
 2 ?

 (A) 16
 (B) 32
 (C) 14
 (D) 36

Answer:A

Solution: Atomic mass of O = 16

Gram atoms = 256 / 16 = 16

20. How many gram atoms are present in 60 g of carbon ?

```
(A) 6 (B) 10 (C) 16 (D) 5
```

Answer:D

Solution: Atomic mass of C = 12

Gram atoms = 60 / 12 = 5

21. Calculate the number of moles present in 7.3 g of HCl.
(A) 0.2 (B) 0.1 (C) 1 (D) 0.02

Answer:A

Solution:Moles = 7.3 / 36.5 = 0.2 mol

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

22. 1 gram molecular volume of a gas is

1) 22.4 litres 2) 22.4dm³ 3) 22400cm³ 4) 42.200cm³

Answer:1,2,3

Solution:At STP (Standard Temperature and Pressure), 1 mole (gram molecular weight) of any ideal gas occupies:22.4 litres = $22.4 \text{ dm}^3 = 22400 \text{ cm}^3$

23. 12g of carbon-12 is found to contain

1) 6.023 X10 ²³ atoms	2) 12 N electrons
3) 18 N sub-atomic particles	4) 6.625 X10 ²⁴ Aoms

Answer:1,3

Solution:12 g of carbon-12 (C-12) is 1 mole of carbon.

1 mole of C-12 contains:

 6.023×10^{23} atoms (Avogadro's number, N).

6 electrons per atom \rightarrow Total electrons = 6 × N = 6N.

Sub-atomic particles (protons + neutrons + electrons) per atom:

Protons = 6, Neutrons = 6, Electrons = $6 \rightarrow$ Total = 18 per atom.

Total sub-atomic particles in 1 mole = $18 \times N = 18N$.

STATEMENT TYPE

1. A and R are correct R is the correct explanation of A

2. A and R are correct R is not the correct explanation of A

3. A is correct, but R is wrong 4. A is wrong, but R is correct

24. **Assertion (A):** The number of atoms present in gram atomic weight of different elements are equal.

Reason (R): The number of molecules present in gram molecular weight of different substances is equal.

Answer:2

Solution:Assertion (A) is correct:

The gram atomic weight (1 mole) of any element contains Avogadro's number (6.022 \times 10²³) of atoms, regardless of the element.

Example: 1 mole of Carbon (12 g) and 1 mole of Oxygen (16 g) both contain 6.022 \times 10^{23} atoms.

Reason (R) is correct but unrelated:

The gram molecular weight (1 mole) of any substance contains 6.022×10^{23} molecules, but this does not explain why gram atomic weights have equal numbers of atoms.

The reason talks about molecules, while the assertion is about atoms in elements (not compounds).

25. **Assertion (A):** 1 a.m.u. = 1.66×10^{-24} g or 1.66×10^{-27} kg.

Reason (R): Atomic weight has no units.

Answer:2

Solution:Assertion (A) is correct:

1 atomic mass unit (a.m.u.) is defined as 1/12th the mass of a carbon-12 atom.

Its value is:1 a.m.u. = 1.66×10^{-24} g or 1.66×10^{-27} kg.

Reason (R) is correct but unrelated:

Atomic weight (relative atomic mass) is a dimensionless quantity (no units) because it is a ratio of the average mass of an atom to 1/12th the mass of a C-12 atom.However, this does not explain why 1 a.m.u. equals the given values.

COMPREHENSION TYPE

Relative atomic mass of an element (RAM) $\frac{\text{Massof1atomofthatelement}}{\frac{1}{12} \times (\text{Mass of C-12atom})}$

26. The total mass of 100 atoms of silicon is:

```
A) 2800 B) 2800 amu C) 28 \times 1.66 \times 10^{-22}g D) Both 2 and 3
```

Answer:D

Solution:Atomic mass of Silicon (Si) = 28 amu (given in the periodic table).

Mass of 100 Si atoms = 100×28 amu = 2800 amu.

Conversion of amu to grams:

1 amu =
$$1.66 \times 10^{-24}$$
 g

 $2800 \text{ amu} = 2800 \times 1.66 \times 10^{-24} \text{ g} = 28 \times 1.66 \times 10^{-22} \text{g}$ (since $2800 = 28 \times 100$).

27. If the atomic weight of oxygen were taken as 100, then what would be

molecular weight of water

A) 18 B) 102 C) 112.5 D) 142.5

Answer:C

Solution: Atomic mass of H = 1, O = 16 \rightarrow H₂O = 2 + 16 = 18

Now, if O is taken as 100 instead of 16, then this is a scaling ratio:

Scaling factor = 100 / 16 = 6.25

Then, molecular weight of $H_2O = 18 \times 6.25 = 112.5$

INTEGER TYPE

28. Volume occupied by 4.4 g of CO₂ in CC is _____

Answer:2240

Solution:Molar mass of $CO_2 = 12$ (C) + 2 × 16 (O) = 44 g/mol.

Number of moles of CO_2 = Mass / Molar mass = 4.4 g / 44 g/mol = 0.1 moles.

Molar volume of a gas at STP = 22.4 L/mol = 22400 cc/mol (since 1 L = 1000 cc).

Volume occupied by 0.1 moles of $CO_2 = 0.1 \times 22400$ cc = 2240 cc.

29. Number of moles of water present in 720 grams of water is _____

Answer:40

Solution:Molar mass of $H_2O = 2 \times 1$ (H) + 16 (O) = 18 g/mol. Number of moles of H_2O = Mass / Molar mass = 720 g / 18 g/mol = 40 moles.

MATRIX MATCHING TYPE

30. List - I	List - II
A) 1.008 g of H_2	1) 0.1 gram atom
B) 245 g of $KC\ell O_3$	2) 22.4 litre at S.T.P
C) 71 grams of $C\ell_2$	3) 12.046×10^{23} molecules
D) 10.8 grams of silver	4) 3.0115×10^{23} molecules

Answer:A-4,B-3,C-2,D-1

Solution:

A) 1.008 g of $H_2 \rightarrow \text{moles}=1/2=0.5\text{moles}= 3.0115 \times 10^{23} \text{ molecules} \rightarrow 4$

- B) 245 g of $KC\ellO_3 \rightarrow moles=245/122.5=2moles=12.046\times 10^{23} molecules \rightarrow 3$
- C) 71 grams of $C\ell_2 \rightarrow moles=71/71=1mole=2$) 22.4 litre at S.T.P $\rightarrow 2$
- D) 10.8 grams of silver \rightarrow moles=10.8/108=0.1 moles= 0.1 gram atom \rightarrow 1

KEY

				TEACHING	i TASK				
				JEE MAIN	LEVEL QUE	STIONS			
1	2	3	4	5	6	7	8	9	10
2	1	1	1	4	3	2	1	2	4
				ADVANCE	D LEVEL Q	UESTIONS			
11	12	13	14	15	16	17	18	19	
В	С	2	5	3	4	1	5	30	
20									
a-3,b-1,c-4	1,d-2								
				LEARNER'	S TASK				
1	2	3	4	5	6	7	8	9	10
Α	С	В	Α	Α	D	В	В	D	D
11	12	13	14	15	16	17	18	19	20
В	С	С	Α	С	D	C	В	Α	D
21	22	23	24	25	26	27	28	29	
Α	1,2,3	1,3	2	2	D	С	2240	40	
30									
a-3,b-1,c-4	4,d-2								