
15. HYDROCARBONS

SOLUTIONS

TEACHING TASK

JEE MAINS LEVEL QUESTIONS

- 1. The correct IUPAC name of $CH_3 CH_2 CH(CH_3) CH_2 CH_3$ is
 - A) 3-Methylpentane

B) 2-Ethylbutane

C) 2-Methylpentane

D) 3-Ethylbutane

Answer:A

Solution:The longest chain has 5 carbons (pentane) and there's a methyl substituent on the middle carbon — carbon-3 — giving 3-methylpentane.

2. The IUPAC name of $CH_2 = CH - CH(CH_3) - CH_2 - CH_3$ is

(FA & SA- 5 Marks / 8 Marks)

- A) 3-Methylpent-1-ene
- A) 5-Methylpent-1-ene
- C) 2-Vinylbutane

- B) 2-Ethylbut-1-ene
- D) 3-Methylpent-4-ene

Answer:A

Solution:The longest chain that includes the double bond has 5 carbons, so the parent name is pentene.

Double bond starts at carbon 1, so \rightarrow pent-1-ene There is a methyl group (-CH₃) attached to carbon 3

IUPAC name:3-Methylpent-1-ene

- 3. The IUPAC name of $CH_3 C \equiv C CH(CH_3)$, is
 - A) 4-Methylpent-2-yne
- B) 2-Isopropylprop-1-yne
- C) 4,4-Dimethylbut-2-yne
- D) 2-Methylpent-3-yne

Answer:A

Solution:

CH₃ -C
$$\equiv$$
 C - C H-CH₃

$$CH_{3}$$

From left: C1–C2 \equiv C3–C4–C5 \rightarrow triple bond at 2-3, methyl at C4 \rightarrow 4-methylpent-2-yne.

- 4. The IUPAC name of $CH_3 - CH_2 - CH(OH) - CH(CH_3) - CH_3$ is
 - A) 3-Methylpentan-2-ol
- B) 2-Ethylbutan-3-ol
- C) 2-Methylpentan-3-ol
- D) 2-Isopropylpropan-1-ol

Answer:C

Solution:
$$CH_3 - CH_2 - CH(OH) - CH(CH_3) - CH_3$$

Numbering is chosen so -OH gets the lowest possible locant (both ends give OH at C-3), then choose direction giving the substituent the lower number \rightarrow methyl at C-2.

- 5. The IUPAC name of $CH_3 - CH_2 - C(CH_3) = CH - CH(CH_3) - CH_3$ is

 - A) 3,4-Dimethylhex-2-ene
 B) 2-Ethyl-3-methylpent-2-ene
 - C) 2,4-Dimethylhex-3-ene D) 2,3-Diethylbut-2-ene

Answer:C

Solution:
$$CH_3 - CH_2 - C(CH_3) = CH - CH(CH_3) - CH_3$$

Longest chain = 6 C (hexene). Numbering from the right gives substituent locants 2 and 4 (rather than 3 and 5), with the double bond at C-3 2,4-Dimethylhex-3-ene

- The IUPAC name of $CH_2 = CH CH = CH CH(CH_3) CH_3$ is 6.
 - A) 5-Methylhexa-1,3-diene
 - B) 2-Methylhexa-3,5-diene
 - C) 2-Vinylpenta-1,3-diene
- D) 4-Methylhexa-2,4-diene

Answer:A

Solution:

$$CH_2 = CH - CH = CH - CH(CH_3) - CH_3$$
 $CH_2 = CH - CH = CH - CH(CH_3) - CH_3$

Longest chain containing both double bonds is 6 carbons \rightarrow hexa-1,3-diene. Numbering from the left (nearest the first double bond) gives the lowest locants for the double bonds (1,3) and places the methyl substituent at C-5 \rightarrow 5-methylhexa-1,3-diene

- The IUPAC name of $CH_3 CH_2 CH(CH_2CH_3) CH(CH_3) CH_2 CH_3$ is 7.
 - A) 3-Ethyl-4-methylhexane
- C) 4-Methyl-3-ethylhexane
- B) 2,3-DiethylpentaneD) 2-Methyl-3-ethylhexane

Answer:A

Solution: Numbering chosen so ethyl gets the lower locant (alphabetical tie-breaker

3-Ethyl-4-methylhexane

- 8. The IUPAC name of $CH_2 = CH - CH_2 - CH_2 - OH$ is
- (FA & SA- 2 Marks)
- A) But-3-en-1-ol B) But-1-en-4-ol C) Allyl alcohol D) 3-Hydroxyprop-1-ene

Answer:A

Solution:OH has priority, so number from the OH end \rightarrow but-3-en-1-ol

- 9. The IUPAC name of $CH_3 - CH = CH - C = C - CH(CH_3) - CH_3$ is
 - (FA & SA- 3 Marks / 4 Marks)

- A) 6-Methylhept-2-en-4-yne
- B) 2-Methylhept-5-en-3-yne
- C) 3-Methylhept-2-en-4-yne D) 5-Methylhept-3-en-1-yne

Answer:A

Solution:
$$CH_3 - CH = CH - C = C - CH(CH_3) - CH_3$$

Longest chain = 7; numbering from left gives double at C2 and triple at C4, methyl at C6 \rightarrow 6-methylhept-2-en-4-yne.

10. The correct IUPAC name of the compound

$$CH_3 - CH_2 - CH(CH_3) - CH_2 - C \equiv C - CH_3$$
 is

- A) 5-Methylhept-2-yne
- B) 3-Methylhept-5-yne
- C) 4-Methylhept-5-yne
- D) 2-Ethylhex-3-yne

Answer:A

Solution: Numbering chosen to give the triple bond the lowest possible locant? triple at C2 and methyl at C5 \rightarrow 5-methylhept-2-yne

$$CH_3 - CH_2 - CH(CH_3) - CH_2 - C = C - CH_3$$

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

- 11. Which of the following statements about hydrocarbons are correct?

 A)Alkenes are unsaturated hydrocarbons containing at least one carbon-carbon double bond.
 - B)The general formula for alkynes is C_nH_{2n-2} , where n = 2.
 - C)Cycloalkanes have the same general formula as alkenes: C_nH_{2n} .
 - D)Aromatic hydrocarbons always contain a benzene ring with alternating single and double bonds.

Answer:A,B,C,D

- Solution:A) Alkenes are unsaturated hydrocarbons containing at least one carbon—carbon double bond. →True
 - B) The general formula for alkynes is C_nH_{2n-2} , where n=2. \rightarrow True (for n=2, C_2H_2)
 - C) Cycloalkanes have the same general formula as alkenes: $C_nH_{2n} \rightarrow True$
 - D) Aromatic hydrocarbons always contain a benzene ring with alternating single and double bonds. \rightarrow True
- 12. Which of the following statements about functional groups and IUPAC nomenclature are correct?
 - A)The suffix "-ol" is used for alcohols, and when naming an alcohol, the parent chain must include the carbon bearing the -OH group.
 - B)In aldehydes, the carbonyl carbon is always numbered as C1 in the parent chain, and the suffix "-al" replaces the "-e" of the alkane name.
 - C)For ketones, the suffix "-one" is used, and the chain is numbered to give the carbonyl carbon the lowest possible number.
 - D)If a molecule contains both a double bond and an -OH group, the alcohol (OH) gets priority in numbering over the double bond.

Answer:A,B,C,D

- Solution:A) The suffix "-ol" is used for alcohols, and the parent chain must include the carbon bearing the -OH group. \rightarrow True.
 - B) In aldehydes, the carbonyl carbon is always numbered as C1, and the suffix "-al" replaces "-e" of the alkane. \rightarrow True.
 - C) For ketones, suffix "-one" is used, and chain is numbered to give carbonyl carbon the lowest possible number. \rightarrow True, unless a higher priority group (like carboxylic acid, aldehyde) is present.
 - D) If a molecule contains both a double bond and an -OH group, the alcohol (OH) gets priority in numbering over the double bond. \rightarrow True: Alcohol has higher priority than alkene in numbering (according to IUPAC, OH > C=C).

Assertion and Reason Type:

- A) Both A) and (R) are true and (R) is the correct explanation of (1)
- B) Both A) and (R) are true and (R) is not the correct explanation of (1)
- C) A) is true but (R) is false

D) A) is false but (R) is true

Assertion: The correct IUPAC name of CH₃-CH₂-CH_{(CH₃)-CH₂-CH₃ is 3-} 13.

methylpentane.

: The parent chain is selected as the longest continuous carbon Reason

chain, and numbering is done to give the substituent the lowest

possible number.

Answer:A

Solution: Assertion is true CH₃-CH₂-CH_(CH₃)-CH₂-CH₃ is 3-methylpentane).

Reason is true (parent chain = longest continuous chain; numbering chosen to give substituent the lowest possible locant).

The reason correctly explains the assertion.

14. : The compound with formula C₄H₈ must be named as a

cycloalkane if it forms a ring structure.

: Cycloalkanes have the general formula $\boldsymbol{C}_{n}\boldsymbol{H}_{2n}\text{,}$ which is different Reason from alkanes (C_nH_{2n+2}), and ring formation reduces the number of

hydrogen atoms by two.

Answer:A

Solution: Assertion is true (if a C₄H₈ molecule forms a ring, it is named as a cycloalkane — e.g., cyclobutane).

Reason is true (cycloalkanes follow C_nH_{2n}; forming a ring removes two H atoms vs. the corresponding alkane).

The reason correctly explains the assertion.

Comprehension Type:

Alkyl group:

The group formed by the removal of one hydrogen atom from all alkane molecule is called an alkyl group. Example of alkyl group are methyl group (CH₃—) and ethyl group (C₂H₅—). Methyl group (CH₃—) is formed by the removal of one H atom from methane (CH₄); and ethyl group (C₂H₅—) is formed by the removal of one H atom from ethane (C_2H_6) .

- 15. What is an alkyl group?
 - A) A group formed by removing a carbon atom from an alkane
 - B) A group formed by removing one hydrogen atom from an alkane
 - C) A hydrocarbon with a double bond
 - D) A cyclic hydrocarbon

Answer:B

Solution: An alkyl group is formed by removing one hydrogen atom from an alkane.

- Which of the following represents an ethyl group? 16.
 - A) CH₃-
- B) C_2H_5- C) $CH_2=CH-$
- D) C_6H_5-

Answer:B

Solution:Ethyl group = C_2H_5

- 17. How is a methyl group represented?
 - A) CH₂-
- B) CH₄-
- C) C_2H_5

D) CH₂-

Answer:A

Solution: Methyl group = CH₃-

Integer Type:

18. Number of 2° hydrogen atoms in n-pentane (CH₃-CH₂-CH₂-CH₂-CH₃) is _____

Answer:6

Solution:Structure:CH₃-CH₂-CH₂-CH₂-CH₃

A 2° hydrogen is attached to a 2° carbon (a carbon bonded to two other carbons).

In n-pentane:

The three middle carbons are 2° carbons.

Each 2° carbon has 2 hydrogens.

So total 2° hydrogens =3 carbons × 2 hydrogens each = 6

19. Number of 1° carbon atoms in iso-butane (CH₃-CH(CH₃)-CH₃) is ______ **Answer:3**

Solution: A 1° carbon is attached to only one carbon.

Here, the three CH₃ groups are 1° carbons.

Matrix Matching Type:

20. LIST - 1

(compound)

- A) 2,2-Dimethylbutane
- B) 2,3-Dimethylbutane
- C) 3-Ethylpentane
- D) Cycloheptane

LIST - 2

(type of carbons)

1)1°, 2°, 3°

2)1°, 2°, 4°

3)Only 2° carbons

4)1°, 3°

5)1°, 2°

Answer: A-2, B-4, C-1, D-3.

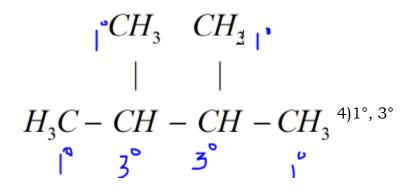
Solution:

$$CH_{3}$$

$$H_{3}C - CH_{2} - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$


$$CH_{3}$$

$$CH_{3}$$

A) 2,2-Dimethylbutane

B) 2,3-Dimethylbutane

1)1°, 2°, 3°

 CH_3

C) 3-Ethylpentane

 $H_{\mathbb{B}}C - CH_2 - C H - CH_2 - CH_3$

D) Cycloheptane

3)Only 2° carbons

LEARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's)

The hydrocarbon residue derived by removing a hydrogen atom from an alkyne 1. is called:

A)Alkenyl group B)Alkyl group C)Alkynyl group D)Aryl group

Answer:C

Solution: Removing H from alkyne \rightarrow alkynyl group

2. The unsaturated hydrocarbons with C=C are called _____.

A)Alkanes

B)Alkenes

C)Alkynes D)None

Answer:B

Solution: The unsaturated hydrocarbons with C=C are called Alkenes.

3. The IUPAC name of ethylene is:

A) Ethane

B) Ethene

C) Ethyne

D) Ethyl

Answer:B

Solution: Ethylene = common name for $H_2C=CH_2 \rightarrow IUPAC$ name = ethene.

- 4. A compound with the molecular formula C₃H₄ must contain:
 - A) All single bonds

B) One double bond

C) One triple bond

D) Two double bonds

Answer:C

Solution:General formula: $C_nH_{2n-2} \rightarrow alkyne$ or diene C_3H_4 fits alkyne formula.

5. The general formula of alkene is:

A) C_nH_n

B) $C_n H_{2n+2}$

C) $C_n H_{2n}$

D) $C_n H_{2n}$

Answer:C

Solution:The general formula of alkene is $C_n H_{2n}$ for one double bond.

- 6. Alkenes have in their molecule:
 - A) Two hydrogen atoms less than in a molecule of corresponding alkane
 - B) Two hydrogen atoms more than in a molecule of corresponding alkyne
 - C) Four hydrogen atoms less than in a molecule of corresponding alkane
 - D) The same number of hydrogen atoms as alkynes

Answer:A,B

Solution:

- A) Two hydrogen atoms less than in a molecule of corresponding alkane \rightarrow True (C_nH_{2n} vs C_nH_{2n+2}).
- B) Two hydrogen atoms more than in a molecule of corresponding alkyne \rightarrow True (C_nH_{2n} vs $C_nH_{2n-2} \rightarrow$ difference of 2 H).
- C) Four hydrogen atoms less than in a molecule of corresponding alkane \rightarrow False (that's alkyne vs alkane).
- D) The same number of hydrogen atoms as alkynes \rightarrow False.
- 7. The primary suffix for saturated hydrocarbons is:

A)-ane

B) -ene

C) -yne

D)-yl

Answer:A

Solution: The primary suffix for saturated hydrocarbons is -ane.

- 8. Which of the following statements is correct?
 - A)Alkynes are more unsaturated than alkenes
 - B)Alkenes are more saturated than alkanes
 - C)Alkanes can undergo addition reactions
 - D)Alkynes have the same general formula as alkenes

Answer:A

Solution:A) Alkynes are more unsaturated than alkenes \rightarrow True (triple bond vs double bond).

- B) Alkenes are more saturated than alkanes \rightarrow False.
- C) Alkanes can undergo addition reactions \rightarrow False (they undergo substitution).
- D) Alkynes have same general formula as alkenes \rightarrow False (alkynes C_nH_{2n-2}).

9. Which of the following is a saturated hydrocarbon?

A) CH₄

B) $CH_2 = CH_2$

C) C_2H_2

D) C_6H_6

Answer:A

Solution: Saturated = only single bonds \rightarrow CH₄.

10. Which of the following contains a double bond?

A) CH₄

B) $C_{2}H_{6}$

C) C_2H_4

D) C_2H_2

Answer:C

Solution: C_2H_4 = ethene has C=C double bond.

JEE MAINS LEVEL QUESTIONS

1. Which of the following compounds is an alkyne?

A) CH₃CH₂CH₃

B) CH₃CH=CH₂

C) CH=CCH₃

 $D) C_6 H_6$

Answer:C

Solution: $CH = CCH_3 \rightarrow C_3H_4 \rightarrow C_nH_{2n-6} \rightarrow alkyne$

2. The IUPAC name of CH₃CH(CH₃)CH₂CH₃ is: (FA & SA- 5 Marks / 8 Marks)

A) 2-Methylbutane

B) 3-Methylbutane

C) 2,2-Dimethylbutane

D) 3,3-Dimethylbutane

Answer:A

Solution:Longest chain: 4 carbons (butane)

Methyl on $C2 \rightarrow 2$ -methylbutane

3. The compound $CH_3C \equiv CCH_3$ is named as:

(FA & SA- 2 Marks)

A) Butyne

B) 2-Butyne

C) 1-Butyne

D) 3-Butyne

Answer:B

Solution:4 carbons, triple bond between C2 and C3 \rightarrow 2-butyne

4. The number of primary (1°) carbon atoms in neopentane (C(CH₃)₄) is:

A) 1

B) 3

C) 4

D) 5

Answer:C

Solution:Neopentane C(CH3)4 has four methyl carbons; each methyl carbon is primary \rightarrow 4 primary C's

5. Which of the following represents a vinyl group?

A) CH₂-

B) CH₂=CH-

C) C=CH

D) $C_6 H_5 -$

Answer:B

Solution: Vinyl group: CH₂=CH-

6. The IUPAC name of CH_2 =CH- $CH(CH_3)_2$ is:

A)2-Methylpropene

B) 3-Methyl-1-butene

C) 2-Methyl-1-butene

D) 3-Methylbutane

Answer:B

Solution:Interpreting CH_2 =CH- $CH(CH_3)$ - CH_3 (one methyl on the 3rd C of a 4-C chain) \rightarrow 3-methyl-1-butene

- 7. A compound with molecular formula C_4H_6 could be:
 - A) Butyne
- B) Butadiene
- C) Cyclobutene
- D) All of the above

Answer:D

Solution:C₄H₆ formula fits butyne, butadiene, or a cycloalkene (e.g. cyclobutene).

- 8. Which of the following statements is true?
 - A) Alkanes are unsaturated hydrocarbons
 - B) Alkenes can undergo addition reactions
 - C) Alkynes have the same general formula as alkanes
 - D) Aromatic compounds always contain triple bond

Answer:B

Solution: A) False — alkanes are saturated

- B) True alkenes undergo addition
- C) False alkynes formula C_nH_{2n-2} , alkanes C_nH_{2n+2} D) False aromatic have benzene rings, not triple bonds
- 9. The hybridization of carbon atoms in propyne ($CH_2-C \equiv CH$) is:

A) sp^3 , sp^3 , sp^3

B) sp^3 , sp, sp C) sp^2 , sp^2 , sp^2 D) sp^3 , sp^2 , sp

Answer:B

Solution:C in CH₃: sp³

C in C_≡: sp

C in \equiv CH: sp

- The IUPAC name of $CH_3-CH_2-C \equiv C-CH_3$ is:
 - A) 2-Pentyne
- B) 3-Pentyne
- C) 1-Pentyne
- D) 2-Methylbutyne

Answer:A

Solution:Reason: $CH_3-CH_2-C \equiv C-CH_3$ is a five-carbon chain; numbering from the nearer end gives the triple bond at $C-2 \rightarrow pent-2$ -yne (2-pentyne)

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

- Which of the following statements is/are correct?
 - A)Alkanes are saturated hydrocarbons with only single bonds
 - B)Alkenes contain at least one carbon-carbon double bond
 - C)Ethylene is the trivial name for ethene
 - D)Acetylene is the trivial name for ethyne

Answer:A,B,C,D

Solution:A) Alkanes are saturated hydrocarbons with only single bonds \rightarrow True.

- B) Alkenes contain at least one carbon-carbon double bond \rightarrow True.
- C) Ethylene is the trivial name for ethene \rightarrow True.
- D) Acetylene is the trivial name for ethyne \rightarrow True.
- 12. Which of the following statements about hydrocarbon classification is/are
 - A)Cycloalkanes have the general formula C_nH_{2n} and are saturated cyclic

compounds

- B)Aromatic compounds like benzene follow Hückel's rule (4n+2 p electrons)
- C)The common name for propyne is methylacetylene
- D)Isopentane has the IUPAC name 2-methylbutane

Answer:A,B,C,D

Solution:A) True (though small rings have strain, but yes saturated).

- B) True at a basic organic chemistry level, though this question is at an introductory stage; they might accept it as correct.
- C) True (CH₃-C \equiv CH).
- D) Isopentane has the IUPAC name 2-methylbutane \rightarrow True.

Assertion and Reason Type:

- A) Both A) and (R) are true and (R) is the correct explanation of (1)
- B) Both A) and (R) are true and (R) is not the correct explanation of (1)
- C) A) is true but (R) is false
- D) A) is false but (R) is true
- 13. **Assertion** : IUPAC name of CH_3 - $CH(CH_3)$ - CH_2 - CH_3 is 2-methylbutane but

not 3-methylbutane.

Reason: The parent chain is numbered to give the substituent the lowest

possible number.

Answer:A

Solution:2-methylbutane gives substituent the lowest possible locant 2 vs 3.

14. **Assertion**: The IUPAC name of CH₃-CH₂-CH(CH₃)-CH₂-CH(CH₃)-CH₃ is 2,4-

dimethylhexane but not 3,5-dimethylhexane.

Reason: When numbering the parent chain, the sum of the locants of the

substituents should be the lowest possible.

Answer:A

Solution: Numbering from the other end gives 2,4 (sum 6) which is preferred over 3,5 (sum 8)

Comprehension Type:

a) Carbon atoms can be of four types,

A carbon atom, which is attached to one or no carbon atoms is called primary (1°) carbon atom.

A carbon atom attached two carbon atoms is called secondary (2°) carbon atom. A carbon atom attached to three carbon atoms is called tertiary (3°) carbon atom.

A carbon atom attached to four carbon atoms is called quaternary (4°) carbon atom.

- **b)** The hydrogens attached to 1°, 2° and 3° carbon atoms are called 1°, 2° and 3° hydrogen atoms respectively.
 - 1°, 2° and 3° and 4° carbon atoms
- 15. A carbon atom that is directly bonded to three other carbon atoms is classified as:
 - A) Primary carbon

B) Secondary carbon

C) Tertiary carbon

D) Quaternary carbon

Answer:C

Solution: A carbon atom bonded to three other carbon atoms is a tertiary carbon.

- 16. Hydrogen atoms attached to a secondary carbon atom are called:
 - A) Primary hydrogen atoms
- B) Secondary hydrogen atoms
- C) Tertiary hydrogen atoms
- D) Quaternary hydrogen atoms

Answer:B

Solution:Hydrogen atoms attached to a secondary carbon are called secondary hydrogen atoms.

Integer Type:

17. Number of carbons in the root word "Pent" is _____

Answer:5

Solution:The root word "Pent" represents 5 carbon atoms.

18. Number of hydrogen atoms in an alkane with root word "Hept" is _____

Answer:16
Solution:For an alkane with root word "Hent" the nur

Solution:For an alkane with root word "Hept", the number of carbons = 7. General formula of alkane = C_nH_{2n+2}

So for
$$n = 7$$
:

$$H = 2(7) + 2 = 16$$

Matrix Matching Type:

- 19. LIST-I (Compound)
 - i) CH₃-CH₂-CH₃
 - ii) CH₂-CH=CH₂
 - iii) CH_≡CH
 - iv) C₆H₆

- LIST-II (Hydrocarbon Type)
- p) Alkane
- q) Alkene
- r) Alkyne
- s) Aromatic

Answer:i-p,ii-q,iii-r,iv-s

Solution:

- i) CH₂-CH₂-CH₃
- ii) $CH_3-CH=CH_2$
- iii) CH_≡CH
- iv) C_6H_6

- p) Alkane
- q) Alkene
- r) Alkyne
- s) Aromatic

KEY

				TEACHING	TASK				
			IFF MAINS	LEVEL QU					
1	2	3		5	6	7	8	9	10
A	A	A	C	С	Α	A	Α	A	A
,	,	,	-		L QUESTIO				
11	12	13					18	19	
	A,B,C,D	Α	Α	В	В	Α	6	3	
	4, C-1, D-3.								
				LEARNERS	TASK				
			CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's						
1	2	3	4	5	6	7	8	9	10
С	В	В	С	С	A,B	Α	Α	Α	С
			JEE MAINS LEVEL QUESTIONS						
1	2	3	4	5	6	7	8	9	10
С	Α	В	С	В	В	D	В	В	Α
			JEE ADVANCED LEVEL QUESTIONS						
11	12	13	14	15	16	17	18	19	
A,B,C,D	A,B,C,D	Α	Α	С	В	5	16	i-p,ii-q,iii-r,iv-s	

