12.IDEAL AND NON-IDEAL SOLUTION

SOLUTIONS

TEACHING TASK

JEE MAINS LEVEL QUESTIONS

- 1. Which statement about an ideal solution is correct?
 - A) It always releases heat when mixed.
 - B) It obeys Raoult's law at all compositions.
 - C) Its volume changes a lot on mixing.
 - D) Its vapour pressure is always zero

Answer:B

Solution:

- A False: For ideal solutions, ?H_{mix} = 0, no heat released or absorbed.
- B True: Ideal solutions obey Raoult's law for all components over entire composition range.
- C False: $\Delta V_{mix} = 0$ for ideal solutions.
- D False: Vapor pressure is not zero; it follows Raoult's law.
- If a binary mixture shows positive deviation from Raoult's law then: 2.

(FA & SA- 2 Marks)

- A) total vapour pressure is lower than expected
- B) total vapour pressure is higher than expected
- C) it must be an azeotrope with highest boiling point
- D) A Hmix is negative

Answer:B

Solution:Positive deviation means:

A-B interactions weaker than A-A or B-B.

Total vapor pressure higher than Raoult's law prediction.

 $H_{mix} > 0$ (endothermic).

Can form minimum boiling azeotrope.

- 3. Which pair is a common example of negative deviation (strong A-B interactions)?

 - A) Ethanol + Hexane B) Acetone + Chlorofo C) Benzene + Toluene D) Hexane + Heptane B) Acetone + Chloroform

Answer:B

Solution: Acetone–Chloroform (H-bonding between them → stronger A–B interaction).

4. A mixture that boils at a constant temperature and has the same liquid and vapour composition is called:

- A) Supersaturated solution
- C) Ideal solution

B) Azeotrope
D) Colloid

Answer:B

Solution: A mixture that boils at a constant temperature and has the same composition in liquid and vapor phases is called an azeotrope.

5. Which thermodynamic sign is true for positive deviation on mixing

(FA & SA- 3 Marks / 4 Marks)

- A) $_{\Delta}$ Hmix < 0 and $_{\Delta}$ Vmix < 0
- B) $_{\Lambda}$ Hmix > 0 and $_{\Delta}$ Vmix > 0
- C) \wedge Hmix = 0 and \wedge Vmix = 0
- D) $_{\Lambda}$ Hmix < 0 and $_{\Lambda}$ Vmix >0

Answer:B

Solution:Step 1: Positive deviation from Raoult's law

Positive deviation occurs when A–B interactions are weaker than A–A and B–B interactions.

Step 2: Thermodynamic changes

 $_\Delta \, H_{\mbox{\tiny mix}} \!\!>\! 0$ (endothermic, because energy required to break stronger A–A / B–B bonds)

 $_{\Delta}V_{\rm mix}$ > 0 (volume increases, because molecules are held less tightly in the mixture)

- 6. Which pair behaves nearly ideally (close to Raoult's law)?
 - A) Methanol + Water
- B) Benzene + Toluene
- C) Ethanol + Water (95:5)
- D) Acetone + Chloroform

Answer:B

Solution: Ideal solutions obey Raoult's law when:

Intermolecular forces between A-A, B-B, and A-B are nearly equal.

Molecules are similar in size, shape, and chemical nature.

Methanol + Water – Strong H-bonding, but different strengths \rightarrow negative deviation (not ideal).

Benzene + Toluene – Both non-polar, similar structures, similar intermolecular forces \rightarrow nearly ideal.

Ethanol + Water (95:5) – Strong H-bonding, non-ideal.

Acetone + Chloroform − H-bonding between chloroform H and acetone O → negative deviation.

- 7. A minimum-boiling azeotrope is associated with:
 - A) Negative deviation and maximum boiling point
 - B) Positive deviation and minimum boiling point
 - C) No deviation and constant boiling at high temperature
 - D) Immiscible liquids only

Answer:B

Solution: Minimum-boiling azeotrope arises when vapour pressure is higher than

ideal (positive deviation)

- 8. Why does acetone + chloroform mixture show lower vapour pressure than predicted? (FA & SA- 5 Marks / 8 Marks)
 - A) Because A–B attractions are weaker
 - B) Because A-B attractions are stronger (hydrogen bonding)
 - C) Because both are gases at room temperature
 - D) Because chloroform evaporates without mixing

Answer:B

Solution:Stronger A–B interactions reduce vapour pressure → negative deviation (acetone accepts H from CHCl₂)

- 9. Which of the following is true for an ideal binary solution?
 - A) Mole fraction of A in liquid = mole fraction of A in vapour
 - B) $_{\Delta}H_{\text{mix}} = 0$ and $_{\Delta}V_{\text{mix}} = 0$
 - C) It always forms an azeotrope
 - D) Vapour pressures do not depend on composition

Answer:B

Solution: Ideal binary solution has no enthalpy or volume change on mixing.

- 10. If the experimental total vapour-pressure curve lies below the straight ideal line, the mixture shows:
 - A) Positive deviation (higher vapour pressure)
 - B) Negative deviation (lower vapour pressure)
 - C) Ideal behaviour
 - D) Phase separation into two layer

Answer:B

Solution:Experimental curve below the ideal straight line means stronger A–B attractions \rightarrow lower total vapour pressure.

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

- 11. Solutions showing positive deviations from Raoult's law include
 - A) Acetone + Carbon disulphide
- B) Acetone + Ethyl alcohol

C) Acetone + Benzene

D) Acetone + Aniline

Answer:A,B,C

Solution: Examples of solutions showing positive deviations

Carbon tetrachloride +benzene

Carbon tetrachloride + chloroform

Carbon tetrachloride + Toluene

Acetone + Carbon disulphide

Acetone +Ethyl alcohol

Acetone + Benzene

Methyl alcohol + Water

Ethyl alcohol + Water

- 12. Which statements are true for ideal solutions?
 - A) They obey Raoult's law at all concentrations.
 - B) $_{\Delta}H_{\text{mix}} = 0$.
 - C) $\Delta V_{\text{mix}} = 0$.
 - D) They always form azeotrope

Answer:A,B,C

Solution:A) Obey Raoult's law at all concentrations \rightarrow True.

- B) $_{\Delta}H_{\text{mix}} = 0 \rightarrow \text{True}.$
- C) $_{\Delta}V_{\text{mix}} = 0 \rightarrow \text{True}.$
- D) Always form azeotrope \rightarrow False

Statement Type:

- A) Statement I is True, Statement -II is True; Statement -II is a correct explanation for Statement -I
- B)Statement -I is True, Statement -II is True; Statement -II is NOT a correct explanation for Statement -I
- C) Statement -I is True, Statement -II is False
- D)Statement -II is False, Statement -I is True
- 13. **Statement I**: The mixing of two completelymiscible liquid. A and B showing positive deviation from Raoult's law is followed by an absorption of heat
 - **Statement II** :The A-B molecular interaction forces are stronger than the A-A or B-B molecular interaction forces.

Answer:C

Solution:

Statement I: True — Positive deviation mixtures absorb heat ($_{\Delta}$ Hmix > 0), so endothermic.

Statement II: False — In positive deviation, A–B interactions are weaker than A–A and B–B.

- 14. **Statement I** : A mixture of ethanol and hexane shows positive deviation from Raoult's law
 - **Statement II** : In ethanol, the molecules are associated through intramolecular hydrogen bonding.

Answer:C

Solution:

Statement I: True — Ethanol + Hexane shows positive deviation because strong H-bonding in ethanol breaks when mixed with hexane.

Statement II: False — Ethanol molecules are associated by intermolecular hydrogen bonding (between molecules), not intramolecular (within same molecule).

Comprehension Type:

Comprehension - I

An ideal solution is one which obeys Raoult's law over the entire range of concentration and temperature, and on mixing. So for ideal solutions the

conditions are,

It should obey Raoult's Law:

The vapour pressure of the solution is exactly what Raoult's law predicts (no surprises)

$$P_A = P_A^0 X_A$$
 and $P_B = P_B^0 X_B$

No heat change when mixed:

When we mix the two liquids, no heat is absorbed or released

$$\Delta H_{\text{mix}} = 0$$

No volume change when mixed:

The total volume after mixing = sum of volumes before mixing

$$\Delta V_{\text{mix}} = 0$$

- 15. According to the definition of an ideal solution, which of the following conditions must be true?
 - A) It must show either positive or negative deviation from Raoult's law.
 - B) The volume of the mixture must be less than the sum of the volumes of the individual components.
 - C) The enthalpy change ($_{\Delta}$ H) upon mixing the components must be zero.
 - D) The intermolecular forces between different molecules (A-B) must be stronger than those between like molecules (A-A or B-B).

Answer:C

Solution: For an ideal solution, the key conditions are:

It must obey Raoult's law at all concentrations.

There must be no heat change during mixing ($_{\Delta}$ Hmix = 0).

There must be no volume change ($_{\Delta}$ Vmix = 0).

The intermolecular forces $A-B \tilde{A}-A \tilde{B}-B$.

- 16. A solution is formed by mixing two liquids, A and B. It is observed that the total volume of the mixture is exactly equal to the sum of the volumes of A and B before mixing, and the vapor pressure of the solution precisely matches the predictions of Raoult's law. What can be conclusively stated about this solution?
 - A) The solution is ideal, and the process of mixing is exothermic.
 - B) The solution is non-ideal because it obeys Raoult's law.
 - C) The solution is ideal, and the process of mixing involves no heat change.
 - D) The solution is non-ideal because there is no volume change.

Answer:C

Solution: Given:

No volume change $\rightarrow \Delta Vmix = 0$

Obeys Raoult's law exactly → Ideal behavior

Therefore, Δ Hmix must also be 0 (no heat absorbed or evolved)

Integer type:

17. The vapour pressure of pure liquid A is 100 mmHg. Its mole fraction in a solution is 0.6. What is the partial vapour pressure of A in the solution_____

Answer:60

Solution: Given: Vapour pressure of pure liquid A, P o= 100 mmHg

Mole fraction of A in solution, $x_4 = 0.6$

Using Raoult's Law: $P_A = x_A \times P_A^0 = 0.6 \times 100 = 60 \text{ mmHg}$

18. In order to exhibit the maximum boiling point azeotropy then change in voume is always greater than

Answer:0

19.

Solution: For maximum boiling azeotrope, it shows negative deviation from Raoult's law, and $_{\Delta}V_{mix}$ <0

So, the change in volume is always less than zero

Matrix Matching Type: Column-I

Examples of Solution

- A) Acetone + Aniline B) Water + CH₃OH
- C) Benzene + toluene
- D) n-Hexane + n-heptane

Column-II

Types of Solution

- p) +ve deviation from ideal behaviour
- g) -ve deviation from ideal behaviour
- r) Ideal solution
- s) Colloids

Answer: A-q, B-p, C-r, D-r

Solution:

- A) Acetone + Aniline
- B) Water + CH₃OH
- C) Benzene + toluene
- D) n-Hexane + n-heptane
- q) -ve deviation from ideal behaviour
- p) +ve deviation from ideal behaviour
- r) Ideal solution
- r) Ideal solution

LEARNERS TASK

CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ'S)

- A solution that obeys Raolult's law is called 1.
 - A) normal solution C) ideal solution
- B) non-ideal solution D) saturated solution

Answer:C

Solution: An ideal solution is one that obeys Raoult's law at all compositions and shows no heat or volume change on mixing

- 2. A mixture of two completely miscible non-ideal liquids which distil as such without change in its compostion at a constant temperature as though it were a pure liquid. This mixture is known as
 - A) Binary liquid mixture

B)Azerotropic mixture

C) Eutectic mixture

D)Ideal mixture

Answer:B

Solution: Such a mixture boils at a constant temperature and liquid and vapour have the same composition \rightarrow this is an azeotrope

- 3. The liquid pair benzene-toluene shows
 - A)Irregular deviation from Raoult's law
 - B)Negative deviation from Raoult's law
 - C)Positive deviation from Raoult's law
 - D)Practically no deviation from Raoult's law

Answer:D

Solution:Both are non-polar hydrocarbons with similar molecular sizes and intermolecular forces, so they behave almost ideally

- 4. Liquids *A* and *B* form an ideal solution
 - A)The enthalpy of mixing is zero
 - B)The entropy of mixing is zero
 - C)The free energy of mixing is zero
 - D) The free energy as well as the entropy of mixing are each zero

Answer:A

Solution:For an ideal solution:

Intermolecular forces between A-A, B-B, and A-B are equal.

No heat is absorbed or evolved on mixing $\rightarrow \Delta H_{mix}$ = 0

Volume change on mixing is zero $\rightarrow \Delta Vmix = 0$

Entropy of mixing is not zero because mixing increases disorder \rightarrow Smix > 0 Gibbs free energy of mixing is negative \rightarrow $_{\Delta}$ Gmix < 0

- 5. In mixture A and B components show negative deviation as
 - A) $\Delta V_{\text{mix}} > 0$
 - B) $\Delta H_{\text{mix}} < 0$
 - C) A-B interactions is weaker than A-A and B-B interaction
 - D)A-B interactions is strong than A-A and B-B interaction

Answer:B,D

Solution: Negative deviation arises because A–B interactions are stronger; this also makes A Hmix negative.

- 6. Which of the following liquid pairs shows a positive deviation from Raoult's law
 - A) Water hydrochloric acid
- B) Water nitric acid
- C) Acetone chloroform
- D) Benzene-methanol

Answer:D

Solution:Benzene-methanol: benzene nonpolar, methanol polar+H-bonding \rightarrow weaker A-B interactions \rightarrow positive deviation.

- 7. Identify the mixture that shows positive deviation from Rault's law
 - A) $CH_3 + (CH_3)_2 CO$

B) $(CH_3)_2CO + C_6H_5NH_2$

C)
$$CHCl_3 + C_6H_6$$

D)
$$(CH_3)_2 CO + CS_2$$

Answer:D

Solution: Acetone + CS₂ is a classic example showing positive deviation.

- 8. The azeotropic mixture of water and *HCl* boils at 108.5°C. When this mixture is distilled, it is possible to obtain
 - A) Pure hydrogen chloride
 - B) Pure water
 - C) Pure water as well as pure HCl
 - D) Neither HCl nor H_2O in their pure states

Answer:D

Solution:An azeotrope distils as itself, so you cannot obtain the pure components by simple distillation.

9. Azeotropic mixture of HCl and water has

(AFMC 1997)

- A) 84% HC1
- B) 22.2% HCl
- C) 63% HC1
- D) 20.2% HC1

Answer:D

Solution: Hydrochloric acid forms a maximum boiling azeotrope with water.

The constant-boiling mixture of HCl-water at 1 atm contains about 20.2% HCl by mass.

- 10. Which of the following form/s ideal solution?
 - i) Ethyl bromide + Ethyl iodide
- ii) Ethyl alcohol + water
- iii) Chloroform + Benzene
- iv) Benzene + Toluene
- A) i,ii,iii are correct
- B) i,iii,iv are correct
- C) i,iv are correct
- D) All are correct

Answer:C

Solution:i) Ethyl bromide + Ethyl iodide → Ideal

- ii) Ethyl alcohol + water → Positive deviation
- iii) Chloroform + Benzene → Negative deviation
- iv) Benzene + Toluene → Ideal

JEE MAINS LEVEL QUESTIONS

- 1. A solution of two volatile liquids shows positive deviation from Raoult's law. Which of the following is true?
 - A) A–B interactions are stronger than A–A and B–B interactions
 - B) A-B interactions are weaker than A-A and B-B interactions
 - C) Solution will have higher boiling point than ideal solution
 - D) Solution will have negative deviation in vapour pressure

Answer:B

Solution:Positive deviation from Raoult's law means:

A–B interactions < A–A and B–B interactions

Molecules escape more easily \rightarrow higher vapor pressure than ideal

Lower boiling point than ideal (not higher)

2. 20 g of a non-volatile solute is dissolved in 180 g of water. The solution is ideal. If the mole fraction of water is 0.9, the mole fraction of solute is:

(FA & SA- 3 Marks / 4 Marks)

A) 0.1

B) 0.09

C) 0.11

D) 0.2

Answer:A

Solution: For a two-component solution: $X_{\text{solute}} + X_{\text{solvent}} = 1$

Given: $X_{water} = 0.9$

 $X_{\text{solute}} = 1 - 0.9 = 0.1$

- 3. Which of the following is an example of maximum boiling azeotrope?
 - A) Ethanol-water mixture
- B) Hydrochloric acid-water mixture
- C) Nitric acid-water mixture
- D) Acetone-water mixture

Answer:B,C

Solution:B) Hydrochloric acid-water mixture and C) Nitric acid-water mixture Both are examples of maximum boiling azeotropes due to strong hydrogen bonding and negative deviation from Raoult's law.

4. If a solution shows a negative deviation from Raoult's law, then:

(FA & SA- 2 Marks)

- A) The total vapour pressure is higher than predicted
- B) The total vapour pressure is lower than predicted
- C) There is no change in vapour pressure
- D) Both liquids are non-volatile

Answer:B

Solution:Negative deviation from Raoult's law occurs when A–B interactions are stronger than A–A and B–B interactions.

This makes it harder for molecules to escape into the vapor phase.

Vapor pressure is lower than predicted by Raoult's law.

5. When 40 mL of liquid X is mixed with 60 mL of liquid Y, the total volume is observed to be 97 mL. Which statement is correct?

(FA & SA- 5 Marks / 8 Marks)

- A) Solution shows positive deviation B) Solution shows negative deviation
- C) Ideal solution is formed
- D) Solution shows azeotropy

Answer:B

Solution:

Step 1: Volume change on mixing

Ideal solution: $_{\Delta}V_{\text{mix}}$ = 0 (volume = sum of individual volumes).

Here: 40 + 60 = 100 mL expected, but observed = 97 mL $\rightarrow \Delta V_{mix} = -3$ mL (volume contraction).

Step 2: Relate to deviation from Raoult's law

Volume contraction usually occurs when A–B interactions are stronger than A–A and B–B \rightarrow negative deviation from Raoult's law.

- 6. A graph of temperature vs mole fraction of a binary solution shows a minimum boiling point at 0.4 mole fraction of component A. Which type of azeotrope is this?
 - A) Maximum boiling azeotrope
- B) Minimum boiling azeotrope

C) Ideal solution

D) Non-volatile solution

Answer:B

Solution: A minimum on the T vs x plot = minimum-boiling azeotrope (positive deviation type)

- 7. In a binary solution of benzene and toluene, at a certain composition the vapour pressure equals the sum of partial pressures predicted by Raoult's law. This indicates:
 - A) Positive deviation

B) Negative deviation

C) Ideal solution

D) Maximum boiling azeotrope

Answer:C

Solution: Observed vapour pressure equals Raoult's law prediction \rightarrow ideal behavior.

- 8. Which of the following statements is true for azeotropic mixtures?
 - i) Boil at constant temperature like a pure liquid
 - ii) Liquid and vapour have the same composition
 - iii) Components can be separated by simple distillation
 - iv) They are either maximum or minimum boiling azeotropes
 - A) i, ii, iv B) i, ii, iii C) i, iii, iv D) All are correct

Answer:A

Solution:i) True – Azeotropes boil at a constant temperature.

- ii) True At the azeotropic composition, liquid and vapor have the same composition.
- iii) False Components cannot be separated by simple distillation at azeotropic composition (mixture distills unchanged).
- iv) True Azeotropes are either maximum boiling (negative deviation) or minimum boiling (positive deviation).
- 9. A binary solution of liquids A and B shows positive deviation from Raoult's law. Which of the following will be true?
 - A) Boiling point of the solution is higher than ideal solution
 - B) Boiling point of the solution is lower than ideal solution
 - C) Volume contraction occurs
 - D) Total vapour pressure is lower than predicted

Answer:B

Solution:Boiling point lower than ideal (higher vapour pressure \rightarrow lower boiling point).

- 10. 50 mL of ethanol is mixed with 50 mL of water. The total volume is 96 mL. This indicates:
 - A) Positive deviation from Raoult's law
 - B) Negative deviation from Raoult's law
 - C) Ideal solution

D) Formation of minimum boiling azeotrope

Answer:B

Solution:50 + 50 = 100 mL expected, observed 96 mL \rightarrow volume decrease \rightarrow negative deviation.

JEE ADVANCED LEVEL QUESTIONS

Multi correct answer type:

- 11. A solution of acetone and chloroform shows negative deviation from Raoult's law. Which of the following is true?
 - A) A-B interactions are stronger than A-A and B-B interactions
 - B) A-B interactions are weaker than A-A and B-B interactions
 - C) Total vapour pressure is higher than ideal solution
 - D) Total vapour pressure is lower than ideal solution

Answer:A,D

Solution:A) A-B interactions stronger than A-A and B-B \rightarrow True (due to H-bonding).

- B) Weaker \rightarrow False.
- C) Vapour pressure higher \rightarrow False.
- D) Vapour pressure lower \rightarrow True.
- 12. In a binary ideal solution, which of the following statements are correct?
 - A) Total vapour pressure is sum of partial pressures of each component
 - B) Partial pressures obey Raoult's law
 - C) There is no heat absorbed or evolved on mixing
 - D) Volume of mixture is equal to sum of individual volumes

Answer:A,B,C,D

Solution:

- A) Total vapour pressure = sum of partial pressures \rightarrow True (Dalton's + Raoult's).
- B) Partial pressures obey Raoult's law \rightarrow True.
- C) No heat absorbed/evolved \rightarrow True ($_{\Delta}$ H_{mix} = 0).
- D) Volume of mixture = sum of volumes \rightarrow True ($_{\Delta}V_{mix} = 0$).
- 13. A solution of ethanol and water shows positive deviation from Raoult's law. Which statements are correct?
 - A) Boiling point of solution is lower than predicted for ideal solution
 - B) Heat is absorbed during mixing
 - C) Volume of solution increases on mixing
 - D) Vapour pressure is lower than predicted by Raoult's law

Answer:A,B,C

Solution:

- A) Boiling point lower than ideal prediction \rightarrow True (higher vapour pressure \rightarrow lower b.p.).
- B) Heat absorbed during mixing \rightarrow True ($_{\Delta}H_{mix} > 0$).
- C) Volume increases on mixing \rightarrow True ($_{\Delta}V_{mix} > 0$).

D) Vapour pressure lower \rightarrow False (positive deviation \rightarrow vapour pressure higher).

Comprehension Type:

Comprehension - I

In a solution, If solute-solvent forces are weaker than solute-solute or solvent-solvent forces, the solution shows positive deviation.

In such cases, the molecules can escape more easily \rightarrow vapour pressure is higher than predicted by Raoult's law.

So, the total vapour pressure of the mixture > expected vapour pressure (from Raoult's law).

- 14. If in a solution, solute–solvent interactions are weaker than solute–solute or solvent–solvent interactions, which of the following is true?
 - A) Solution shows negative deviation from Raoult's law
 - B) Solution shows positive deviation from Raoult's law
 - C) Vapour pressure is lower than predicted by Raoult's law
 - D) Molecules escape less easily from the solution

Answer:B

Solution: This leads to positive deviation from Raoult's law (molecules escape more easily).

- A) Negative deviation \rightarrow False.
- B) Positive deviation \rightarrow True.
- C) Vapour pressure lower \rightarrow False (it's higher).
- D) Molecules escape less easily \rightarrow False (they escape more easily).
- 15. In a solution with weaker solute–solvent forces, the total vapour pressure of the mixture:
 - A) Equals the vapour pressure predicted by Raoult's law
 - B) Is lower than predicted by Raoult's law
 - C) Is higher than predicted by Raoult's law D) Cannot be determined

Answer:C

Solution: Higher than predicted by Raoult's law (positive deviation).

Comprehension - II

Azeotropic mixtures (Constant boiling mixtures):

Definition:

Mixtures of liquids that boil at a fixed temperature (like pure liquids).

They have the same composition in liquid and vapour phase.

They cannot be separated by fractional distillation.

Types of azeotropes:

- 1. Minimum boiling azeotrope
- 2.Maximum boiling azeotrope
- 16. Which of the following statements correctly describes an azeotropic mixture?
 - A) Boils at constant temperature like a pure liquid
 - B) Composition of liquid and vapour phases is different
 - C) Can be separated completely by fractional distillation
 - D) Boils at variable temperature depending on composition

Answer:A

Solution:A) Boils at constant temperature like a pure liquid \rightarrow True.

- B) Composition of liquid and vapour phases is different \rightarrow False (same composition at azeotrope point).
- C) Can be separated completely by fractional distillation \rightarrow False (cannot be separated by distillation).
- D) Boils at variable temperature depending on composition \rightarrow False (at azeotrope composition, fixed boiling point).
- 17. Which of the following is true about azeotropes?
 - A) They have the same composition in liquid and vapour phase
 - B) They can be either minimum or maximum boiling type
 - C) They can always be separated by simple distillation
 - D) They are mixtures of solids and liquids

Answer:A,B

Solution:A) Same composition in liquid and vapour phase \rightarrow True.

- B) Either minimum or maximum boiling type \rightarrow True.
- C) Always separated by simple distillation \rightarrow False (cannot be separated by distillation).
- D) Mixtures of solids and liquids \rightarrow False (azeotropes are liquid mixtures).

Integer type:

16.	For ideal solution showing positive or negative deviation the total volume of the
	solution will not be equal to

Answer:0

Solution:In ideal solutions showing positive or negative deviation, the total volume of the solution will not be equal to Sum of individual volumes. $\Delta V \neq 0$

17. If the solution doesnt form an azeotrope then change in enthapy of that solution is _____

Answer:0

Solution:If the solution does not form an azeotrope, then the change in enthalpy $(_{\Delta}H_{mix})$ is Zero.

Matrix Matching Type:

18. **COLUMN-I**

COLUMN-II

- A) Ideal solution 1.Total vapour pressure is lower than predicted; stronger A–B interactions
- B) Non-ideal solution

showing positive deviation

- 2. Obeys Raoult's law exactly; no change in enthalpy or volume
- C) Non-ideal solution showing

negative deviation

3. Total vapour pressure is higher

than predicted; weaker A-B interaction

Answer: A - 2, B - 3, C - 1

Solution:

A) Ideal solution

- 2. Obeys Raoult's law exactly; no change in enthalpy or volume
- B) Non-ideal solution showing positive deviation
- 3. Total vapour pressure is higher than predicted; weaker A–B interaction
- C) Non-ideal solution showing negative deviation
 - 1.Total vapour pressure is lower than predicted; stronger A–B interactions

KEY

					TEACHING	TASK				
				JEE MAINS LEVEL QUESTIONS						
	1	2	3	4	5	6	7	8	9	10
В		В	В	В	В	В	В	В	В	В
				JEE ADVAI	EE ADVANCED LEVEL QUESTIONS					
	11	12	13	14	15	16	17	18	19	
A,B,C		A,B,C	С	С	С	С	60	0	A-q,B-p,C-	-r,D-r
					LEARNERS	TASK				
				CONCEPTI	CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ'S)					
	1	2	3	4	5	6	7	8	9	10
С		В	D	Α	B,D	D	D	D	D	С
				JEE MAINS LEVEL QUESTIONS						
	1	2	3	4	5	6	7	8	9	10
В		Α	В,С	В	В	В	С	Α	В	В
				JEE ADVANCED LEVEL QUESTIOI			NS			
	11	12	13	14	15	16	16	17	18	
A,D		A,B,C,D	A,B,C	В	С	Α	0	0	A - 2, B - 3	3, C – 1