Chemistry : Stoichiometric Equations

3. STOICHIOMETRIC CALCULATIONS

SOLUTIONS

TEACHING TASK

```
------
```

JEE MAIN LEVEL QUESTIONS

1. When a sample of baking soda is strongly ignited in a crucible, it suffered a loss in weight of 3.1g. The mass of baking soda is

1) 16.8 g 2) 8.4g 3) 11.6g 4) 4.2g **Answer:2**

Solution: 2Na+1CO3 \rightarrow No2CO3 + CO2+H2O The loss of baking soda is due to release of CO2 and H2O. Na+1CO3 \rightarrow 23+1 +12+3 (16) = 84gm4. 2 Na+1CO3 \rightarrow 23+1 +12+3 (16) = 84gm4. 2 Na+1CO3 \rightarrow 23+1 +12+3 (16) = 84gm4. 2 Ma+1CO3 \rightarrow 23+1 +12+3 (16) = 84gm4. 2 males of Na+1CO3 it losses Imale of CO2/2+420. CO2 = 12+32=44 gm4. H2O = 2+16 = 18 gm4. H2O = 2+16 = 18 gm4. For 2 males of Na+1CO3 it losses 62gm8. Weight loss. 168 \rightarrow 62. 2 \rightarrow 3-1 $\chi = \frac{168 \times 3 \cdot 1}{62} = \frac{520.8}{62} = 8 \cdot 4 \text{ gm4}.$ The mass of baking soda flet 3 · 1 gm4 of lass is 8 · 4 gm4.

2. 1g of Mg is burnt in a vessel containing 0.5g of oxygen. The reactant remaining unreacted is

1) 0.25g of Mg 2) 0.1g of Mg 3) 0.1g of O₂ 4) 0.75g of Mg **Answer:1**

 $\delta_{\text{olution}} = 2. Mg + 0_2 \longrightarrow 2 Mg O$ 2×24=48 32gmy. For 48gmi of Mg , 32gmi of 02 is required. For Mg=1gm. Mg 02-48 32 2 = 32 = 0.666 gms. For Ign Mg, 0.66 gms of 02 required. So , Mg is except here because they are giving only orsgow of or Mg 02 48 32 x= 48x0.5 32. = 0.75 gms of Mg. he have Igm of Mg but 0.75gm af Mg is used. Remaining Mg = 1 - 0.75 = 0.25 gms of Mg.

3. The mass of 80% pure H_2SO_4 required to completely neutralise 60g of NaOH is

8th Class		(Chemistry : Stoichiometric Equations
1) 92g	2) 58.8g	3) 73.5g	4) 98g
Answer: 1	$\begin{array}{c} 98 \\ x \end{array} \xrightarrow{66 \times 9} 61 \\ \overline{2} = \frac{66 \times 9}{86} \\ \hline Rure + 15504 \text{ is } 73 + 5gms \\ Bul + Hey are + 1elling \\ add \text{ impure } H_2S04 \\ \hline 804. \xrightarrow{7} 1007. \xrightarrow{7} 10$	r - 2 moler of Naol 16) = 78 gm3. gm9. Given 100H Nooll 0 8 = <u>588</u> = 73.5 gm 1 mixed with 60 80% pure Has 10 get 80% pw 3.5 2 3.5 2 3.5 2 3.5 10 91.875 gms	H required 1= 60g. U.S. Igmy NaOH.

4. 60 gms of limestone on heating produced 22g of CO_2 . The percentage of CaCO_3 in limestone is

1) 80% 2) 60% 3) 83.3% 4) 87.66%

Answer:3

5. The mass of oxygen required for the rusting of 4.2g of iron is (Fe=56)
1) 1.2g
2) 1.8g
3) 2.4g
4) 3.2g

Answer:2

PHX Ares 3. Equition: Caco3 A Cao+ Co2 Caco3 = 40+12+48 = 100 gm3 CO2 = 12+2(16) = 44 gm3 Cacoz Coz x > 22 x = 32×100 = 50 gml. 4472 To produce signing of CO2, Sogni Coco3 required. But they are giving 60gms. 100 %. 3 60 x 3 50 $\lambda = \frac{100 \times 50}{6 \phi} = \frac{500}{6} = 83.33 \%$ 83.33% of Calog is used produce 22gry of COZ 05> ABS- 2 Solution> 4Fe+302 → 2Fe203 4 moles of Fe required for 3 moles of 02 4Fe => 4x56 , 302 = 3x32 = 96gm3 Fe 02 204 96 x= 9<u>6x4.2</u> 284 234 ×96 4.2 × 2 =1.8gmg.

Educational Operating System

6. 4.2g of baking soda on strong ignition in an open container leaves a residue of mass

1) 2.65g	2) 3.1g	3) 2.1g	4) 3.35g
----------	---------	---------	----------

Answer:1

8th Class

Solution: 2 Na HCO3 -> Nay (03 + CO, + H3 O. On heating baking soda it loves (02 & H3 O. 2 Na H CO3 -> 2 [23+1+12+48] = 2×84=168.gm? Nay (03 -> 46+12+48 = 106 gm3. Na H CO3 Nag (03. 168 106 4.2 2 $x = \frac{106 \times 4.2}{168} = \frac{245 \cdot 2}{168} = 2.65 gmg$ On strong heating of 4-2gms of NaOH, 2.65 gms of Nag (03.75 remained.

7. The number of moles of KI required to produce 0.1 mole of K_2 Hg I₄ is 1) 1.6 2) 0.8 3) 3.2 4) 0.4

Answer:4

Solution: $4KI + Hg \rightarrow K_2HgI_4 + 2K^+$

Moles of KI needed: 0.1×4=0.4 mol

8. 'x' grams of calcium carbonate was completely burnt in air. The weight of the solid residue formed is 28g. What is the value of 'x' (in grams) ?

 1) 44
 2) 200
 3) 150
 4) 50

Answer:4

Solution: $CaCO_3 \rightarrow CaO + CO_2$ cational Operating System

For 1 mole CaCO₃, 1 mole of Cao produced

1 mole CaCO₃ molecular weight=40+12+3(16)=100gms

1 mole of CaO molecular weight=40+16=56gms

Given CaO=28,No.of moles=28/56=0.5moles

So CaCO₃ is also 0.5 moles

 $0.5 \text{ mole } CaCO_3 \text{ molecular weight=} 0.5(100)=50$

8th Class The equation for the preparation of phosphorus in an electric furnace is $2Ca_3(PO_4)_2 + 6SiO_2 + 10C \longrightarrow 6CaSiO_3 + 10CO + P_4$ Determine.

- i) The amount of phosphorus formed for each mole of $Ca_3(PO_4)_2$ used.
- ii) The amount of phosphorus formed for each gram of $Ca_3(PO_4)_2$ used.
- iii) The amount of phosphorus in tons formed for each ton of $Ca_3(PO_4)_2$ used.

	i	ii	iii
1)	62g	0.2g	0.2g
2)	72g	2g	0.4g
3)	52g	3g	0.2g
4)	42g	0.2g	4g

Answer:1

 $2Ca_3(PO_4)_2 + 6SiO_2 + 10C \rightarrow 6CaSiO_3 + 10CO + P_4$

Phosphorus per mole of Ca₃(PO₄)₂:

- 2 moles of $Ca_3(PO_4)_2 \rightarrow$ 1 mole of P_4 (124 g).
- 1 mole → 62 g of P₄.

ii) Phosphorus per gram of $Ca_3(PO_4)_2$:

Sol • Molar mass of $Ca_3(PO_4)_2 = 310 \text{ g/mol.}$ • 1 g $\rightarrow \frac{62}{2 \times 310} = 0.1 \text{ g of } P_4.$

iii) Phosphorus per ton of $Ca_3(PO_4)_2$:

• 1 ton \rightarrow 0.2 ton of P_4 .

10. What volume of H_2 at NTP is required to convert 2.8g of N_2 in to NH_3 ? 1) 2240 ml 2) 22400 ml 3) 6.72 lit 4) 224 lit

Answer:3

Solution: $N_2 + 3H_2 \rightarrow 2NH_3$

Moles of $N_2: \frac{2.8}{28} = 0.1 mol$

 H_2 required:

8th Class

Volume at NTP: 0.3×22.4=6.72 L.

11. What is the volume (in litres) of CO_2 liberated at STP, when 2.12gms of sodium carbonate (MW=106) is treated with excess dilute HCl?

1) 2.28 2) 0.448 3) 44.8 4) 22.4

Answer:2

Solution: $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$

Moles of
$$Na_2CO_3$$
: $\frac{2.12}{106} = 0.02 mol$

CO2 produced: 0.02 mol.

Volume at STP: 0.02×22.4=0.448 L.

12. Two grams of sulphur is completely burnt in oxygen to form SO_2 . In this reacton, what is the volume (in litres) of oxygen consumed at STP? (At.wts. of sulphur and oxygen are 32 and 16 respectively)

1) 16/22.414 2) 22.414/16 3) 22.414/32 4) 32/22.414

Answer:2

Solution: $S + O_2 \rightarrow SO_2$

Moles of S: $\frac{2}{16} = 0.0625 mol$

 O_2 required: 0.0625 mol.

Volume at STP: 0.0625×22.4=1.4 L.(22.414/16 (Closest to 1.4 L))

13. What is the volume (lit) of oxygen required at STP to completely convert 1.5 moles of sulphur in to sulphurdioxide

1) 11.2 2) 22.4 3) 33.6 4) 44.8

Answer:3

Solution: $S + O_2 \rightarrow SO_2$

 $1 \ \mathrm{mole} \ \mathrm{S}$, $1 \ \mathrm{mole} \ \mathrm{of}$ oxygen required

number of moles of oxygen=1.5moles

Volume=1.5(22.4)=33.6litres

14. 'X' litres of carbon monoxide is present at STP. It is completely oxidised to CO_2 . The volume of CO_2 formed is 11.207 litres at STP. What is the value of 'X' in litres?

1) 22.414 2) 11.207 3) 5.6035 4) 44.828

Answer:2

Solution: $2CO + O_2 \rightarrow 2CO_2$

Moles of CO₂: 11.2/22.4=0.5moles

CO Also same moles ,CO occupies 11.2litres

4) 0.10

15. 0.01 mole of iodoform (CHI₃) reacts with Ag powder to produce a gas whose volume at NTP is

1) 224 ml2) 112 ml3) 336 ml4) None

Answer:1

Solution: $CHI_3 + 3Ag \rightarrow AgI + CH_3I$

Moles of CHI₃: 0.01 mol.

Gas (CH₃I) produced: 0.01 mol.Volume at NTP: 0.01×22.4=0.224 L=224 mL.

16. What is the volume (lit) of oxygen required at STP to completely convert 1.5 moles of sulphur into sulphurdioxide

1) 11.2 2) 22.4 3) 33.6 4) 44.8

Answer:3

Solution: Solution: $S + O_2 \rightarrow SO_2$

1 mole S ,1 mole of oxygen required

number of moles of oxygen=1.5moles

Volume=1.5(22.4)=33.6litres

17. The number of moles of Fe_2O_3 formed when 5.6 lit of O_2 reacts with 5.6g of Fe?

3) 0.05

1) 0.125 2) 0.01

Answer:3

Solution: $4Fe + 3O_2 \rightarrow 2Fe_2O_3$

Moles of Fe:
$$\frac{5.6}{56} = 0.1 moles$$
 ducational Operating System

Moles of O_2 : $\frac{5.6}{22.4} = 0.25$ moles

 Fe_2O_3 formed: 0.05 mol.

18. 20 ml of nitric oxide combines with 10 ml of oxygen at STP to give $\mathrm{NO}_2.$ The final volume will be

1) 30 ml 2) 20 ml 3) 10 ml 4) 40 ml

Answer:2

Solution: $2NO + O_2 \rightarrow 2NO_2$

20 mL NO + 10 mL O_2 :NO is limiting (uses 10 mL O_2 , produces 20 mL NO2).

Final volume: 20 mL.

19. When 10ml of $\rm H_2$ and 12.5 ml of $\rm Cl_2$ are allowed to react, the final mixture contains under the same conditions

 1) 22.5 ml of HCl
 2) 12.5 ml of HCl

 3) 20 ml of HCl and 2.5ml of Cl₂
 4) 20 ml of HCl only

Answer:3

8th Class

Solution: $H_2 + Cl_2 \rightarrow 2HCl$

Given:

 10 mL H_2

 12.5 mL Cl_2

Determine the Limiting Reactant:

The reaction requires 1:1 mole ratio of H_2 and Cl_2 .

 H_2 is limiting (10 mL) because it is less than Cl2 (12.5 mL).

Calculate Volume of HCl Produced:

1 mL $H_2 \rightarrow 2$ mL HCl (from stoichiometry).

10 mL H₂ \rightarrow 20 mL HCl.

Excess Cl₂ Remaining:

 Cl_2 consumed = 10 mL (equal to H2).

Excess $Cl_2 = 12.5 \text{ mL} - 10 \text{ mL} = 2.5 \text{ mL}$.

Final Mixture Composition:

20 mL HCl (from reaction)

2.5 mL Cl₂ (unreacted excess).

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

1. Silver metal in ore is dissolved by potassium cyanide solution in the presence of air by the reaction

4 Ag + 8 KCN + O_2 + 2H₂O \longrightarrow 4 K[Ag (CN)₂] + 4 KOH

1) The amount of KCN required to dissolve 100 g of pure Ag is 120 g.

2) The amount of oxygen used in this process is 0.742 g

3) The amount of oxygen used in this process is 7.40 g

4) The volume of oxygen used at STP is 5.20 grams.

Answer:1,3

Solution: Reaction: $4Ag + 8KCN + O_2 + 2H_2O \rightarrow 4K[Ag(CN)_2] + 4KOH$

Given:

100 g Ag (Molar mass = $108 \text{ g/mol} \longrightarrow 100/108=0.926 \text{ mol}.$

i) KCN Required:

Stoichiometry: 4 mol Ag = 8 mol KCN.

For 0.926 mol Ag:

KCN= 0.926 x {8/4} = 1.852mol=120g(Molar mass KCN= 65g/mol)

Chemistry : Stoichiometric Equations

Statement 1 is correct (120 g KCN).

Oxygen Used:

Stoichiometry: 4 mol Ag = 1 mol O_2 .

For 0.926 mol Ag:

$${
m O}_2 = 0.926 imes rac{1}{4} = 0.2315 \; {
m mol} pprox 7.40 \; {
m g} \quad {
m (Molar \; mass \; O_2 = 32 \; g/mol)}.$$

Volume at STP:0.2315×22.4=5.20 L (not grams).

Statements:

2 (0.742 g O2): Incorrect.

3 (7.40 g O2): Correct.

4 (5.20 grams O2): Incorrect (should be litres)

0.5 mole of sodium nitrite and 1 mole of ammonium chloride are mixed in 2. aqueous solution. The solution is heated and the evolved gas is collected. Then which is/are correct about the gas/

(A) 22.4 L gas at STP

(C) 0.5 mole of gas

(B) 11.2 L of gas at STP

(D) 14 g of gas

- Answer:B,C,D

Solution: $NaNO_3 + NH_4Cl \rightarrow N_2 + 2H_2O + 2NaCl$

Given:

0.5 mol NaNO₂ (limiting reactant).

1 mol NH₄Cl (excess). Educational Operating System

Gas Produced (N_2) :

Stoichiometry: 1 mol $NaNO_2 = 1 mol N_2$.

 $0.5 \text{ mol NaNO}_2 \rightarrow 0.5 \text{ mol N}_2$.

At STP:0.5×22.4=11.2 L.

Mass of N_2 : 0.5×28=14 g.

Statements:

(A) 22.4 L: Incorrect.

(B) 11.2 L: Correct.

(C) 0.5 mol: Correct.

(D) 14 g: Correct.

STATEMENT TYPE

3. Assertion: Mass of hydrogen required to reduce 7.95 grams of cupric oxide to give metal is 0.2 gm

Reason : It requires a balanced chemical equation for calculation

Answer:1

Solution:The balanced chemical equation for the reduction of cupric oxide (CuO) by hydrogen (H₂) is: $CuO + H_2 \rightarrow Cu + H_2O$ Molar mass of CuO = 63.5 (Cu) + 16 (O) = 79.5 g/mol Moles of CuO in 7.95 g =7.95/79.5=0.1moles From the equation, 1 mole of CuO requires 1 mole of H₂. So, 0.1 mole of CuO requires 0.1 mole of H₂. Molar mass of H₂ = 2 g/mol Mass of H₂ required =0.1×2=0.2 g

4. Assertion: In Haber's process, N_2 and H_2 combine in 1 : 3 volume ratio Reason: Gases combine in simple volume ratio

Answer:2

Solution: The Haber process reaction is: $N_2 + 3H_2 \rightarrow 2NH_3$

So, 1 volume of N_2 reacts with 3 volumes of H_2 , which matches the assertion.

The reason states that gases combine in simple volume ratios, which is Gay-Lussac's Law of Combining Volumes. While this is true, it is a general principle and not the specific explanation for the 1:3 ratio in Haber's process.

Assertion is correct (1:3 ratio in Haber's process).

Reason is correct (gases combine in simple ratios).

But the reason does not directly explain the assertion.

5. Assertion: The volume of O_2 at STP required to burn completely 70ml of acetylene is 175 ml

Reason: One mole of any gas occupies 22400 ml at STP

Answer:2

Solution: The combustion reaction of acetylene (C_2H_2) is

 $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$

From the equation, 2 volumes of C_2H_2 react with 5 volumes of O_2 .

So, 70 ml of C_2H_2 will require: Volume of $O_2 = \frac{5}{2} \times 70 = 175 ml$

The reason states that 1 mole of any gas occupies 22400 ml at STP, which is true (Avogadro's Law), but it is not directly used in this calculation. The key here is the volume ratio from the balanced equation, not the molar volume.

COMPREHENSION TYPE

Comprehension-1

 $\rm O_3 + \rm NO \rightarrow \rm NO_2 + \rm O_2$

6. If 0.740 g of O_3 reacts with 0.670 g of NO, how many gram of NO_2 will be produced ?

1) 0.71 g 2) 0.74 g 3) 0.68 g 4) 0.81 g

8th Class Answer:1

Solution: Write the balanced equation $O_3 + NO \rightarrow NO_2 + O_2$ Calculate moles of O_3 And NO Molar mass of O_3 =48g/mol

Moles of $O_3 = \frac{0.740}{48} = 0.0154 mol$

Molar mass of NO=30g/mol

Moles of NO= $\frac{0.670}{30} = 0.0223 mol$

Determine the limiting reactant

From the balanced equation, 1 mole of O_3 reacts with 1 mole of NO.

 $\rm O_3\,$ requires 0.0154 molof NO, but we have 0.0223 mol of $\,\rm NO.$

Thus, O $_3$ is the limiting reactant (it will run out first).

Calculate moles of NO₂ produced

Since the reaction is 1:1:

Moles of NO_2 =Moles of limiting reactant (O 3)=0.0154mol

Convert moles of NO_2 to grams

Molar mass of $NO_2 = 46g/mol$

Mass of $NO_2 = 0.0154(46) = 0.7084$ g

7. Which compound is the limiting reagent ?
 1) NO
 1) Educat2) O₃ Operating System

3) Both are in equimolar ratio 4) Both are in stoichiometric ratio

Answer:2

Solution:O 3 is the limiting reactant because it is completely consumed first.

8. Number of moles of the excess reactant remaining at the end of the reaction is :

1) 0.007 mol O₃2) 0.014 mol O₃ 3) 0.007 mol NO4) 0.014 mol NO

Answer:3

Solution:Number of moles of the excess reactant remaining at the end of the reaction is:

Step 1: Initial moles of excess reactant (NO)

Moles of NO=0.0223mol

Moles of NO consumed=0.0154mol

Excess NO=0.0223-0.0154=0.0069mol~0.007mol

Comprehension-2

Chemistry : Stoichiometric Equations

9. What weight of Al will be completely oxidised by 44.8 lit of oxygen at STP?

1) 18g Answer:4

Solution: Write the balanced equation for the oxidation of Al

Moles of
$$O_2 = \frac{44.8}{22.4} = 2 mol$$

 $4Al + 3O_2 \rightarrow 2Al_2O_2$

3mol O₂ reacts with 4mol Al

2mol O ₂ will react with
$$\frac{4}{3} \times 2 = \frac{8}{3}$$
 molAl

Mass of Al= $\frac{8}{3} \times 27 = 72g$

10. The mass of zinc (Zn=65) required to produce 224 ml of $\rm H_2$ at STP on treatement with dilute $\rm H_2SO_4$ is

1) 6.5g 2) 0.65g 3) 3.25g 4) 0.065g

Answer:2

Solution:Write the balanced equation $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

At STP, 22400 mL = $1 \mod \text{of gas}$.

Moles of H $_2 = \frac{224}{22400} = 0.01 mol$

1mol Zn produces 1mol H 2

Moles of Zn required=0.01mol

Mass of Zn=0.01x65=0.65g

11. The volume of oxygen required at STP for the complete combustion of 2.2 g of propane is

1) 56 L 2) 5.6 L 3) 11.2 L 4) 22.4 L

Answer:2

Solution: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Molar mass of $C_{3}H_{8} = (3 \times 12) + (8 \times 1) = 44$ g/mol

Moles of
$$C_3 H_8 = \frac{2.2}{44} = 0.05 mol$$

1 mol C_3H_8 requires 5 mol O₂

0.05mol C_3H_8 requires 0.05×5=0.25mol O₂

Volume of O₂ =0.25×22.4=5.6L

12. The number of grams of NaOH that completely neutralises 9.8g of phosphoric acid is _____

Answer:12

Solution: $H_3PO_4 + 3NaOH \rightarrow Na_3PO_4 + 3H_2O$

(1 mole of H_3PO_4 reacts with 3 moles of NaOH)

Molar mass of $H_3PO_4=3(1)+31+4(16)=98g/mol$

Moles of $H_3PO_4 = \frac{9.8}{98} = 0.1 mol$

1 mol H_3PO_4 requires 3 mol NaOH

Moles of NaOH=0.1×3=0.3mol

Molar mass of NaOH=23+16+1=40g/mol

Mass of NaOH=0.3×40=12g

13. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ If 44.8L of H_2 gas at STP was produced, then find the no. of moles of Zn taken initially is _____

Answer:2

Solution:
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

(1 mole of Zn produces 1 mole of H₂) Operating System At STP, 1 mole of gas occupies 22.4 L.

Moles of
$$H_2 = \frac{44.8}{22.4} = 2mol$$

1mol Zn produces 1mol H ₂ Moles of Zn taken=2mol

14. 10 g of $CaCO_3$ on thermal decomposition produces 448 ml of CO_2 gas at STP. The purity of $CaCO_3$ sample is 10x%. Find the value of x.

Answer:2

Solution: $CaCO_3 \rightarrow CaO + CO_2$

1 mole of any gas occupies 22.4 L (22400 mL). Given volume of $CO_2 = 448$ mL.

Moles of $CO_2 = \frac{448ml}{22400ml} = 0.02mol$

 1mol CO_2 is produced by 1mol CaCO_3

(T) Excess of Reagent left is 2

8th Class

Moles of pure CaCO $_3$ =0.02mol Molar mass of CaCO $_3$ =40+12+48=100g/mol Mass of pure CaCO $_3$ =0.02mol×100g/mol=2g Total mass of impure sample = 10 g Mass of pure CaCO $_3$ = 2 g

Purity (%)=
$$\frac{2}{10} \times 100 = 20\%$$

Given that purity is 10x%, we have:10x=20-->x=2

MATRIX MATCHING TYPE

Column I

Column II

 \rightarrow 3C + 4D Α 2B+ 1) (P) Limiting Reagent is A (2moles) (6 moles) $\rightarrow C + \frac{4}{2}D$ 2A + 4B2) (Q) Moles of C formed is 6 moles. (16moles) (24 moles) + 2B 3 A \rightarrow 2C + D 3) nal Operating (R) Limiting Reagent is B (26moles) (16 moles) 4A + 5B \rightarrow 2C + 3D 4) (S) Moles of D formed is 8 moles (12moles) (17moles)

moles.

15.

Answer:1 - P, Q, S, T,2- R, Q, S,3 - R, S, T,4 - P, Q, T

 $\begin{array}{rl} A & + & 2B & \rightarrow 3C + 4D \\ \text{(2moles)} & (6 \text{ moles}) \end{array}$ Given quantities: (2 moles A, 6 moles B) Stoichiometric ratio check: For A:B = 1:2 Given A:B = 2:6 = 1:3 B is in excess, A is limiting. Products formed (based on limiting reagent A):

Moles of $D = 4 \times \text{moles}$ of $A = 4 \times 2 = 8 \text{ moles}$ Excess reagent left: B required = $2 \times \text{moles of A} = 4 \text{ moles}$ B left = 6 - 4 = 2 moles $2 A + 4 B \rightarrow C + \frac{4}{3} D$ 2) (16moles) (24 moles) Given quantities: (16 moles A, 24 moles B) Stoichiometric ratio check: For A:B = 2:4 = 1:2Given A:B = 16:24 = 2:3 A is in excess, B is limiting. Products formed (based on limiting reagent B): Moles of C = $\frac{1}{4}$ × moles of B = $\frac{1}{4}$ × 24 = 6 moles Moles of D = $\frac{4}{3 \times 4}$ × moles of B = $\frac{1}{3} \times 24 = 8$ moles Excess reagent left: A required $=\frac{2}{4} \times \text{moles}$ of B = 12 moles A left = 16 - 12 = 4 moles + 2B \rightarrow 2C+D 3 A 3) (26moles) (16moles) Given quantities: (26 moles A, 16 moles B) Stoichiometric ratio check: For A:B = 3:2Given A:B = 26:16 = 13:8 B is limiting (since $\frac{26}{3} > \frac{16}{2}$) Products formed (based on limiting reagent B):

Moles of C = $3 \times \text{moles}$ of A = $3 \times 2 = 6$ moles

Moles of C = $\frac{2}{2}$ × moles of B = 16 moles Moles of D = $\frac{1}{2}$ × moles of B = 8 moles Excess reagent left: A required = $\frac{3}{2}$ × moles of B = 24 moles A left = 26 - 24 = 2 moles $4A + 5B \rightarrow 2C+3D$ 4) (12moles) (17moles) Given quantities: (12 moles A, 17 moles B) Stoichiometric ratio check: For A:B = 4:5Given A:B = 12:17 A is limiting (since $\frac{12}{4} = 3 < \frac{17}{5} = 3.4$) Products formed (based on limiting reagent A): Moles of C = $\frac{2}{4} \times \text{moles of A} = 6 \text{ moles perating System}$ Moles of D = $\frac{3}{4}$ × moles of A = 9 moles Excess reagent left: B required = $\frac{5}{4}$ × moles of A = 15 moles B left = 17 - 15 = 2 moles16. List –I List -II (At STP) i) 0.224 lit . CO₂ A) 10g. CaCO₃ \longrightarrow B) 1.06 g. Na₂CO₃ $\xrightarrow{\text{excessHCl}}$ ii) 4.48 lit. CO_2 iii) 0.448 lit. CO₂ C) 2.4 g.C $\xrightarrow{\text{excess O}_2}$ D) 0.56 g. CO $\xrightarrow{\text{excess O}_2}$ iv) 2.24 lit. CO₂ v) 22.4 lit. CO₂ (Topic- Weight-Weight Relationship

8th Class Answer:A - iv,B-i,C-ii,D-iii

Solution:

A) 10g. $CaCO_3 \xrightarrow{\Delta}$

 $CaCO_3 \xrightarrow{\Delta} CaO+CO_2$

Molar mass of $CaCO_3$ = 40 (Ca) + 12 (C) + 3×16 (O) = 100 g/mol

Moles of CaCO₃ =
$$\frac{10g}{100g/mol} = 0.1mol$$

From the equation, 1 mole of CaCO3 produces 1 mole of CO2.

Moles of $CO_2 = 0.1 \text{ mol}$

At STP, 1 mole of gas occupies 22.4 L.

Volume of $CO_2 = 0.1 \text{ mol} \times 22.4 \text{ L/mol} = 2.24 \text{ L}$

B) 1.06 g . Na₂CO₃ $\xrightarrow{\text{excessHCl}}$

 $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$

Molar mass of $Na_2CO_3 = 2 \times 23$ (Na) + 12 (C) + 3×16 (O) = 106 g/mol

Moles of $Na_2CO_3 = \frac{1.06g}{106g / mol} = 0.01mol$

From the equation, 1 mole of Na_2CO_3 produces 1 mole of CO_2 .

Moles of $CO_2 = 0.01 \text{ mol}$

Volume of $CO_2 = 0.01 \text{ mol} \times 22.4 \text{ L/mol} = 0.224 \text{ L}$

C) 2.4 g.C $\xrightarrow{\text{excess } O_2}$ Educational Operating System

 $C + O_2 \rightarrow CO_2$

Molar mass of C = 12 g/mol

Moles of C =
$$\frac{2.4g}{12g / mol} = 0.2mol$$

From the equation, 1 mole of C produces 1 mole of CO_2 .

Moles of $CO_2 = 0.2 \text{ mol}$

Volume of $CO_2 = 0.2 \text{ mol} \times 22.4 \text{ L/mol} = 4.48 \text{ L}$

D) 0.56 g. CO
$$\xrightarrow{\text{excess O}_2}$$

 $2CO + O_2 \rightarrow 2CO_2$

Molar mass of CO = 12 (C) + 16 (O) = 28 g/mol

Moles of CO = $\frac{0.56g}{28g / mol} = 0.02mol$

From the equation, 2 moles of CO produce 2 moles of CO_2 (1:1 ratio).

Moles of $CO_2 = 0.02 \text{ mol}$ Volume of $CO_2 = 0.02 \text{ mol} \times 22.4 \text{ L/mol} = 0.448 \text{ L}$

LEARNERS TASK CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ's) The mass of CO_2 obtained when 2g of pure limestone is calcined is 1. 2) 0.22g 4) 8.8g 1) 44g 3) 0.88g Answer:3 Solution: CaCO₃ \longrightarrow CaO+CO₂ Molar mass of CaCO₃= 100 g/mol $Moles = \frac{2g}{100 g/mol} = 0.02 mol$ 1 mole of $CaCO_3$ produces 1 mole of CO_2 . Moles of CO ₂=0.02mol Molar mass of $CO_2 = 44 \text{ g/mol}$ Mass=0.02mol×44g/mol=0.88g 2.76g of silver carbonate on strong ignition leaves a residue weighing 2. 2) 2.16g3) 2.32g1) 2.48g4) 2.84g Answer:2 Solution: $Ag_2CO_3 \xrightarrow{\Delta} 2Ag + CO_2 + \frac{1}{2}O_2$ Molar mass of $Ag_2CO_3 = 276 \text{ g/mol}$ $Moles = \frac{2.76g}{276g/mol} = 0.01mol$ 1 mole of Ag_2CO_3 produces 2 moles of Ag. Moles of Ag=0.02mol Molar mass of Ag = 108 g/molMass of Ag=0.02mol×108g/mol=2.16g The weight of oxygen required to completely react with 27g of Al is 3. 2) 16g 1) 8g 3) 32g 4) 24g Answer:4

8th Class

Solution: $4Al + 3O_2 \rightarrow 2Al_2O_3$ Molar mass of Al = 27 g/mol

$$Moles = \frac{27g}{27g / mol} = 1mol$$

4 moles of Al react with 3 moles of O_2 .

Moles of $O_2 = \frac{3}{4} \times 1 = 0.75$ mol Molar mass of O2 = 32 g/mol Mass=0.75mol×32g/mol=24g

4. 1 mole of $Ba(OH)_2$ will exactly neutralise:

1) 2 moles HCl 2) 1 mole of H_2SO_4 3) 1 mole of H_3PO_3 4) 2 mole of H_3PO_2

Answer:1,2,3,4

Solution: 1) $Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O$

1 mole of $Ba(OH)_2$ will exactly neutralise by 2 moles HCl

$$2) Ba(OH)_{2} + H_{2}SO_{4} \rightarrow BaSO_{4} + 2H_{2}O$$

1 mole of $Ba(OH)_2$ will exactly neutralise by 1 mole of H_2SO_4 Educational Operating System 3) $Ba(OH)_2 + H_3PO_3 \rightarrow BaHPO_3 + 2H_2O$

1 mole of $Ba(OH)_2$, will exactly neutralise by 1 mole of H_3PO_3

 $4) Ba(OH)_2 + 2H_3PO_2 \rightarrow Ba(H_2PO_2)_2 + 2H_2O$

1 mole of Ba(OH), will exactly neutralise by 2 mole of H_3PO_2

5. When three moles of ozone completely reacts with SO_2 , the number of moles of oxygen formed is

1) 3 2) 2 3) zero 4) 1

Answer:1

Solution: $O_3 + SO_2 \rightarrow SO_3 + O_2$

1 mole of O_3 produces 1 mole of O_2 .

3 moles of O_3 produces 3 moles of O_2 .

6. The weight of MgCO3 required for the preparation of 12g of MgSO4 is1) 8.4g2) 4.2g3) 16.8g4) 12.6g

8th Class

Answer:1

Solution: $MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + H_2O + CO_2$ Molar mass of $MgSO_4 = 120 \text{ g/mol}$ $Moles = \frac{12g}{120g/mol} = 0.1mol$ 1 mole of MgCO₃ produces 1 mole of MgSO₄. Moles of MgCO 3=0.1mol Molar mass of MgCO3 = 84 g/molMass=0.1mol×84g/mol=8.4g 7. How much sulphur is to be burnt to produce 0.224 lit of SO_2 at NTP? 3) 3.2 g 1) 0.03g2) 0.32g4) 32g Answer:2 Solution: $S + O_2 \rightarrow SO_2$ At NTP, 22.4 L = 1 mole. Moles $=\frac{0.224L}{22.4L/mol} = 0.01mol$ 1 mole of S produces 1 mole of SO_2 . Molar mass of S = 32 g/molMass=0.01mol×32g/mol=0.32g To get 5.6 lit of CO_2 at STP weight of $CaCO_3$ to be decomposed is 8. 1) 100g 2) 50g 3) 25g 4) 75g Answer:3 Solution: CaCO₃ \longrightarrow CaO+CO₂ At STP, 22.4 L = 1 mole. Moles = $\frac{5.6L}{22.4L/mol} = 0.25mol$ 1 mole of $CaCO_3$ produces 1 mole of CO_2 . Molar mass of $CaCO_3 = 100 \text{ g/mol}$ Mass=0.25mol×100g/mol=25g 9. The volume of chlorine required for the complete reaction of 10 litres of H_2S at STP is $[Cl_2+H_2S \longrightarrow 2HCl+S]$ 1) 22.4 L 3) 10 lit 4) 2.5 lit 2) 5 lit

Answer:3

Solution: 1 volume of Cl_2 reacts with 1 volume of H_2S .

Volume of Cl₂=10L

10. How much volume of CO_2 at S.T.P is liberated by the combustion of 100 cm³ of propane (C_3H_8) ?

1) 100 cm³ 2) 200 cm³ 3) 300 cm³ 4) 400 cm³

Answer:3

Solution: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

1 volume of C_3H_8 produces 3 volumes of CO_2 . volumes of $CO_2=3x100$ cm³=300 cm³

JEE MAIN LEVEL QUESTIONS

11. 6g of Mg reacts with excess of an acid. The amount of hydrogen produced would be

1) 0.5g 2) 1g 3) 2g 4)) 4g
------------------------	------

Answer:1

Solution: $Mg + 2HCl \rightarrow MgCl_2 + H_2$

For 1 mole Mg,1 mole H₂ produced

Mg moles= $\frac{6}{24} = 0.25$ moles

Number of moles of Hydrogen =0.25 moles

Mass of Hydrogen=0.25(2)=0.5g

12. In the formation of $\rm Al_2O_3$ from Al and O_2, if 1.5 mole of oxygen is used up, the mass of Aluminium that reacted is

1) 27g 2) 54g 3) 108g 4) 81g

Answer:2

Solution: $4Al + 3O_2 \rightarrow 2Al_2O_3$

4 moles of Al react with 3 moles of O_2 .

1.5 moles of oxygen= $\frac{4}{3} \times 1.5 molAl = 2molAl$

Molar mass of Al = 27 g/mol

Mass of Al=2mol×27g/mol=54g

13. 6.5g of Zn is dissolved in excess of H_2SO_4 . The weight of $ZnSO_4$ formed is

1) 161g 2) 16.1g, 3) 16.1g 4) 16.1g

Answer:2

Solution: $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

1 mole of Zn produces 1 mole of $\rm ZnSO_4$.

Moles of
$$Zn = \frac{6.5}{65} = 0.1$$
 moles

Moles of ZnSO 4 =0.1mol

Molar mass of ZnSO $_4$ =65+32+64=161g/mol

Mass of ZnSO ₄=0.1mol×161g/mol=16.1g

14. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO_2) with aqueous hydrochloric acid according to the reaction

4HCl (aq) + MnO₂(s) \rightarrow 2H₂O(l) + MnCl₂(aq) + Cl₂(g)

The grams of HCl react with 5.0 g of manganese dioxide will be [at.mass of Mn = 55]

1) 84 g 2) 0.84 g 3) 8.4g 4) 4.2 g

Answer:3

Solution:4 moles of HCl react with 1 mole of MnO₂

Molar mass of MnO₂=55+32=87

No.of moles=
$$\frac{5}{87} = 0.0574$$
 moles

HCl moles=4(0.0574)=0.229moles

Molar mass of HCl =01+35.5=36.5al Operating System

Mass of HC=0.229(36.5)=8.394=8.4g

15. Calculate the weight of iron which will be converted into its oxide by the action of 18g of steam on it.

1) 37.3 gm 2) 3.73 gm 3) 56 gm 4) 5.6 gm

Answer:3

Solution: $Fe + H_2O \rightarrow FeO + H_2$

1 moles of Fe react with 1 moles of H_2O .

Mass of $H_2O = 18 \text{ g}$

Molar mass of $H_2O = 2 + 16 = 18 \text{ g/mol}$

Moles=18/18=1 mole

1mol H ₂O=1mol Fe

Molar mass of Fe = 56 g/mol

Mass of Fe=1×56g/mol=56g

16. The volume of $\mathrm{CO}_{_2}$ formed when 1 litre of $\mathrm{O}_{_2}$ reacted with 2 lit of CO under the same condition is

1) 1L 2) 2L 3) 3L 4) 1.5L

Answer:2

Solution: $2CO + O_2 \rightarrow 2CO_2$

2 volumes of CO react with 1 volume of O_2 to produce 2 volumes of CO_2 .

 $2 L of CO produces 2 L of CO_2$.

1 L of O2 produces 2 L of CO_2 .

Since the reaction uses all reactants completely, the total volume of CO_2 formed is 2 L.

17. The mass of 80% pure calcium carbonate required to prepare 11.2 L of CO_2 at STP is

1) 50g 2) 62.5g 3) 40g 4) 75g

Answer:2

Solution: $CaCO_3 \rightarrow CaO + CO_2$

1 mole of $CaCO_3$ produces 1 mole of CO_2 .

1 mole of any gas occupies 22.4 L.

Given volume of $CO_2 = 11.2$ L.

Moles of CO₂ =11.2/22.4=0.5moles

Moles of CaCO3=0.5moEducational Operating System

Molar mass of CaCO3 = 40 (Ca) + 12 (C) + 3×16 (O) = 100 g/mol

The sample is 80% pure, meaning only 80% of its mass is $CaCO_3$.

Total mass required=
$$\frac{MassOfPureCaCO_3}{Purity} = \frac{50g}{0.8} = 62.5g$$

18. If 5 ml of methane is completely burnt the volume of oxygen required and the volume of CO_2 formed under the same conditions are

1) 5 ml, 10 ml 2) 10 ml, 5 ml 3) 5 ml, 15 ml 4) 10 ml, 10 ml **Answer:2**

Solution: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

1 volume of CH_4 reacts with 2 volumes of O_2

1 volume of CH_4 produces 1 volume of CO_2

CH4 = 5 mL

Then from the equation: O_2 needed = 5×2=10 mL CO_2 formed = 5×1=5 mL

(Topic-Weight-Weight Relationship

19. How many litres of oxygen at STP. are required for complete combustion of 39 gms of liquid Benzene (C_6H_6)? (Atomic weights C = 12, H = 1, O = 16)

1) 842) 22.43) 424) 11.2

Answer:1

Solution: $2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O$

2 moles of C_6H_6 react with 15 moles of O_2 .

Given mass of benzene = 39 g

Molar mass of $C_6H_6 = (6 \times 12) + (6 \times 1) = 78 \text{ g/mol}$

Moles of C_6H_6 =39/78=0.5moles

From the balanced equation:2mol C $_{6}$ H $_{6}$ =15mol O $_{2}$

0.5 moles of $C_6H_6 = \frac{15}{2} \times 0.5$ moles of $O_2 = 3.75$ moles of O_2

At STP, 1 mole of any gas occupies 22.4 L.

Volume of O₂=3.75mol×22.4L/mol=84L

20. $KClO_3$ decomposes to KCl and O_2 . If the volume of O_2 obtained in this reaction is 1.12 lit at STP, weight of KCl formed in the reaction is

1) 7.45 g 2) 2.48 g 3) 4.96 g

4) 1.24 g

Answer:2

Solution: $2KClO_3 \rightarrow 2KCl + 3O_2$

2 moles of KClO₃ produce 2 moles of KCl and 3 moles of O_2 .

At STP, 1 mole of any gas occupies 22.4 L.

Given volume of $O_2 = 1.12$ L.

Moles of $O_2 = \frac{1.12}{22.4} = 0.05$ moles

0.05mol O $_{2} = \frac{2}{3} \times 0.05 mol KCl \approx 0.0333 mol KCl$

Molar mass of KCl = 39 (K) + 35.5 (Cl) = 74.5 g/mol Mass of KCl=0.0333mol×74.5g/mol[~]2.48g

ADVANCED LEVEL QUESTIONS

MULTIPLE CORRECT ANSWER TYPE

1. 4g of hydrogen is ignited with 4g oxygen.Following reaction takes place

 $2H_2 + O_2 \rightarrow 2H_2O$

Select the correct statement(s).

(Topic-Weight-Weight Relationship

1) Oxygen is limiting reactant 2) Hydrogen is limiting reactant 3) 4g of hydrogen reacts with 2g oxygen 4) 4.5 g of water will be formed Answer:1,4 Solution: $2H_2 + O_2 \rightarrow 2H_2O$ 2 moles of H_2 react with 1 mole of O_2 to produce 2 moles of H_2O . Molar mass of $H_2 = 2 \text{ g/mol}$ Moles of $H_2=4/2=2$ moles Molar mass of $O_2 = 32$ g/mol Moles of $O_2=4/32=0.125$ moles 2 mol H2 requires 1 mol O2. Given: 2 mol H_2 and 0.125 mol O_2 . O₂ is the limiting reagent because:Required O₂ for 2 mol H₂ =1mol (but only 0.125 mol is available) Since O_2 is limiting (0.125 mol): Moles of H_2O produced = 2 × moles of $O2 = 2 \times 0.125 = 0.25$ mol. Mass of $H_2O = 0.25 \text{ mol} \times 18 \text{ g/mol} = 4.5 \text{ g}.$ Excess H₂ left: Moles of H_2 consumed = 2 × moles of O_2 = 2 × 0.125 = 0.25 mol. Moles of H_2 remaining = 2 - 0.25 = 1.75 mol. Mass of excess $H_2 = 1.75 \text{ mol} \times 2 \text{ g/mol} = 3.5 \text{ g}.$ $3BaCl_2 + 2Na_3PO_4 \rightarrow Ba_3(PO_4)_2 + 6NaCl$ 2. If 0.2 moles of Na_3PO_4 is mixed with 0.4 moles of $BaCl_2$ then which of the following statements are correct? 1) Na_3PO_4 is limiting reagent 2) 0.1 moles of $Ba_3(PO_4)_2$ is formed 3) 0.6 moles of NaCl is formed 4) 0.1 moles of BaCl₂ is left back Answer: 1,2,3,4 Solution: Moles of Na₃PO₄=0.2 Moles of BaCl₂=0.4 3 moles of $BaCl_2$ react with 2 moles of Na_3PO_4 Ratio required: $\frac{BaCl_2}{Na_3PO_4} = \frac{3}{2} = 1.5$

Given quantities: $\frac{BaCl_2}{Na_3PO_4} = \frac{0.4}{0.2} = 2$

Since 2 > 1.5, Na₃PO₄ is the limiting reagent. 2 moles of Na₃PO₄ produce 1 mole of Ba₃(PO₄)₂ Moles of Ba₃(PO₄)₂ =0.2/2=0.1moles

2 moles of Na_3PO_4 produce 6 moles of NaCl

Moles of NaCl= $\frac{6}{2} \times 0.2 = 0.6$ moles

2 moles of Na_3PO_4 react with 3 moles of $BaCl_2$

Moles of BaCl₂ used=
$$\frac{3}{2} \times 0.2 = 0.3$$
 moles

Excess

BaCl₂ left:0.4 (initial)-0.3 (used)=0.1 moles.

STATEMENT TYPE

A: The moles ratio of H₂, Cl₂ and HCℓ in the reaction H_{2(g)}+Cl_{2(g)}→HCl_(g) is 1:1:2
 R: Substances always react in such a way that their mole ratio is simple whole number.

Answer:3

Solution: $H_{2(g)} + Cl_{2(g)} \rightarrow HCl_{(g)}$

Mole ratio $(H_2:Cl_2:HCl) = 1:1:2$ (A is true).

While mole ratios in balanced equations are simple whole numbers, this is due to stoichiometry, not a universal law.al Operating System

R is not always true (e.g., fractional coefficients exist in some reactions).

4. Assertion: 8 g CH_4 and 14 gr. nitrogen together occupy 11.2 lt. of volume at STP.

Reason: Equal volumes of all gases under the same conditions contain equal number of molecules.

Answer:4

Solution: Moles of CH₄ (Molar mass = 16 g/mol): $\frac{8g}{16g/mol} = 0.5moles$

Moles of N₂ (Molar mass = 28 g/mol): $\frac{14g}{28g/mol} = 0.5moles$

Total moles = 0.5 + 0.5 = 1 mol.

At STP, 1 mol gas = 22.4 L, but A claims 11.2 L (incorrect).

Reason (R):

Avogadro's Law is correct, but it doesn't explain A (which is false).

5. Assertion: The volume ratio of H_2 , Cl_2 and $HC\ell$ in the reaction $H_{2(g)} + Cl_{2(g)} \rightarrow HCl_{(g)}$ is 1:1:2

Reason: Substances always react in such a way that their volume ratio is simple whole number

Answer:1

Solution:Volume ratio $(H_2:Cl_2:HCl) = 1:1:2$ (A is true).

Volume ratios follow stoichiometry (Gay-Lussac's Law) and are simple whole numbers for gases.

R is true and explains A for gas-phase reactions.

COMPREHENSION TYPE

Ammonia gas combines with oxygen gas over platinum catalyst to produce nitric oxide & water. If 13.6 g of Ammonia gas is taken initially,

Comprehension-1

110

Comprehension-2

Gay-Lussac's Law states when gases react, the volume of the reacing gases and the volumes of any gaseous produce are in the ratio of small whole numbers provided the volumes are measured at the same temperature and pressure.

8. 26c.c of CO₂ is passed over red hot coke. The volume of CO evolved is (under the same condition)

1) 15 c.c 2) 10 c.c 3) 32 c.c 4) 52 c.c

Answer:4

Solution: $CO_2 + C(coke) \rightarrow 2CO$

1 volume CO₂ produces 2 volumes CO

Volume of $CO_2 = 26$ c.c

Volume of CO=2×26 c.c=52 c.c

9. If 2 litres of butane is completely burnt the volume of CO₂ obtained under the same conditions would be

2) 4 lit 1) 2 lit 3) 6 lit 4) 8 lit

Answer:4

Solution: $2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O_2$

2 volumes C_4H_{10} produce 8 volumes CO_2 .

Simplified ratio: 1 volume $C_4H_{10} \rightarrow 4$ volumes CO_2 .

Volume of butane = 2 litres

Volume of CO 2=4×2 L=8 Licational Operating System

10. The volume of O_2 required for the combustion of 10 lit of methane under the same condition is

1) 10 lit 2) 22.4 lit 3) 20 lit 4) 2lit

Answer:3

Solution: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

1 volume CH₄ requires 2 volumes O₂.

Given: Volume of methane = 10 litres

Volume of $O_2 = 2 \times 10 L = 20 L$

INTEGER TYPE

11. 'S' grams of calcium carbonate was completely burnt in air. The weight of the solid residue formed is 28 g. What is the value of 'S' (in grams)?

Answer:50

Solution: $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$

1 mole CaCO₃ (100 g) \rightarrow 1 mole CaO (56 g) + CO₂.

(Topic-Weight-Weight Relationship

8th Class

Residue (CaO) = 28 g.

Moles of CaO=28/56=0.5mol

Moles of CaCO $_3$ =0.5 mol Calculate Mass of CaCO $_3$ (S)=0.5 mol×100 g/mol=50 g

S=0.5 mol×100 g/mol=50 g

12. A hypothetical reaction $3A \rightarrow 2B+4C$ is considered. What is the number of moles of B produced if 2 moles of C is produced after the end of reaction?

Answer:1

Solution:4 moles of C=2 moles of B

2 moles of C=0.5×2=1 mole of B

13. What is the volume of oxygen required for complete combustion of 2 ml of ethene (C_2H_4) ?

Answer:6

Solution: $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$

1 volume C_2H_4 requires 3 volumes O2. Volume of ethene $(C_2H_4) = 2$ mL. Volume of O $_2=3\times 2$ mL=6 mL

MATRIX MATCH	ING TYPE	
14. Lis t	t - I	List - II
		(at STP)
A) CH ₃ OH		1) 0.224L <i>CO</i> ₂
B) 1.06gNa ₂ 0	$CO_3 \xrightarrow{ExcessHCl} \rightarrow$	2) 4.48 L <i>CO</i> ₂
C) $2.4 \text{gC} - \frac{\text{E}}{\text{co}}$	$\xrightarrow{\text{xcess O}_2}$	3) 0.448 L <i>CO</i> ₂
D) 0.56gCO-	$\xrightarrow{\text{ExcessO}_2}$	4) 2.24 L <i>CO</i> ₂
		5) 44.8L <i>CO</i> ₂

Answer:A-5,B-1,C-2,D-3

Solution:A) CH_3OH

8th Class

 $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$ 2 moles CH3OH (64 g) \rightarrow 2 moles CO2 (44.8 L at STP). B) $1.06 \text{gNa}_2 \text{CO}_3 \xrightarrow{\text{ExcessHCl}} \rightarrow$ $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$ 1 mole Na₂CO₃ (106 g) \rightarrow 1 mole CO₂ (22.4 L at STP). Given mass: 1.06 g $Na_2CO_3 \rightarrow Moles=1.06/106=0.01$ moles CO_2 produced: 0.01 mol × 22.4 L/mol = 0.224 L. C) $2.4 \text{gC} \xrightarrow{\text{Excess O}_2}{\text{combustion}}$ $C + O_2 \rightarrow CO_2$ 1 mole C (12 g) \rightarrow 1 mole CO₂ (22.4 L at STP). Given mass: 2.4 g C \rightarrow Moles=2.4/12=0.2mol CO_2 produced: 0.2 mol × 22.4 L/mol = 4.48 L. D) $0.56 \text{gCO} \xrightarrow{\text{ExcessO}_2}$ $2CO + O_2 \rightarrow 2CO_2$ 2 moles CO (56 g) \rightarrow 2 moles CO₂ (44.8 L at STP). Given mass: 0.56 g CO \rightarrow Moles = 0.56/28=0.02mol CO_2 produced: 0.02 mol $CO \rightarrow 0.02$ mol $CO_2 = 0.02 \times 22.4$ L = 0.448 L. 15. Column I Column II $\begin{array}{c} A+3B \rightarrow 2C+4D \\ _{2moles} \text{ 6 moles} \end{array}$ 1) (P) Limiting reagent is A $A + 2B \rightarrow \frac{4}{5}C + 5D$ 2) Moles of C formed is 4 (Q) $3A + B \rightarrow C + \frac{2}{5}D$ 10 moles 20 moles $\frac{2}{5}D$ 3) (R) Moles of D formed is 8 $4A + 5B \rightarrow 2C + 3D$ 4) Limiting reagent is B (S) 15moles 25moles (T) Excess of reagent left is 6.25 moles Answer:1-Q,R,2-Q,S,3-P,4-P,T

 $A + 3B \rightarrow 2C + 4D$ 2moles 6 moles Solution:

1mole of A combined with 3 moles of B to produce 2 moles of C and 4 moles of D 2moles of A combined with 6 moles of B to produce 4 moles of C and 8 moles of D

2)
$$A + 2B \rightarrow \frac{4}{5}C + 5D$$

1 mole of A react with 2 moles of B and produces 4/5molesof C and 5 moles of D Given 16 moles of A, it requires 32 moles of B butgiven 10 moles only soB is limiting reagent.

10 moles of B produces $\frac{4}{5} \times \frac{10}{2} = 4$ moles of C

10 moles of B produces
$$\frac{5 \times 10}{2} = 25$$
 moles of D

$$3A + B \rightarrow C + \frac{2}{5}D$$

3 mole s of A react with 1 molesof B and produces 1 moleof C and 2/5 moles of D Given 20 moles of B,it requires 60 moles of A butgiven 10 moles only soA is limiting reagent.

10 moles of Aproduces 10/3 moles of C

10 moles of A produces $\frac{2 \times 10}{5 \times 3} = \frac{4}{3}$ molesofD 10 moles of A uses3.33 mles of B Excess amount=6.666g of B 4) $\frac{4A + 5B \rightarrow 2C + 3D}{15moles 25moles}$ Educational Operating System 4 mole s of A react with 5 molesof B and produces 2 moleof C and 3 moles of D

15 moles of A react with 18.75g of B.So A is limiting reagent

Excess reagent B=25-18.75=6.25g

15 moles of A produces 7.5 moles of $\ensuremath{\text{C}}$

15 moles of A $\,$ prouces 11.2 moles of D $\,$

KEY

						TEACHING	TASK			
					JEE MAIN	LEVEL QUE	STIONS			
	1	2	3	4	5	6	7	8	9	10
	2	1	1	3	2	1	4	4	1	3
	11	12	13	14	15	16	17	18	19	
	2	2	3	2	1	3	3	2	3	
					ADVANCE	d level q	UESTIONS			
	1	2	3	4	5	6	7	8	9	10
1,3		B,C,D	1	2	2	1	2	3	4	2
	11	12	13	14	15				16	
	2	12	2	2	1 - P, Q, S,	T,2- R, Q, S	5,3 - R, S, T,	4 - P, Q, T	A - iv,B-i,C	-ii,D-iii
					LEARNERS	TASK				
					CUQ'S					
	1	2	3	4	5	6	7	8	9	10
	3	2	4	1,2,3,4	1	1	2	3	3	3
					JEE MAIN	LEVEL QUES	STIONS			
	11	12	13	14	15	16	17	18	19	20
1,		2	2	3	3	2	2	2	1	2
					ADVANCE	D LEVEL Q	UESTIONS			
	1	2	-3	ducati 4		erating ⁶	Sveton7	8	9	10
1,4		1,2,3,4	3	4 4	1 1	2	1 J	4	4	3
	11	12	13	14		15				
	50	1	6	A-5,B-1,C-	2,D-3	1-Q,R,2-Q,	,S,3-P,4-P,	Г		

