10.IONIC EQUILIBRIUM CONCEPT OF NEUTRALISATION & PH CALCULATIONS TEACHING TASK

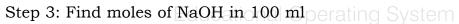
1. P^H of NaOH solution is 13. The amount of NaOH present in 100ml of the solution is

JEE MAIN LEVEL

A) 0.2gm

- B) 0.3gm
- C) 0.4gm
- D) 0.1gm

Answer:C


Solution:

Step 1: Relate pH to pOH

$$p^{H} + p^{OH} = 14 \Rightarrow p^{OH} = 14 - 13 = 1$$

Step 2: Find OH- concentration

$$[OH^{-}] = 10^{-pOH} = 10^{-1} = 0.1M$$

Moles in $100 \,\text{mL} = 0.1 \,\text{M} \times 0.1 \,\text{L} = 0.01 \,\text{mol}$

Step 4: Convert moles to grams

Mass of NaOH = $0.01 \times 40 = 0.4$ g

- 2. When 50ml of 0.1M NaOH is mixed with 50ml of 0.1M H_2SO_4 the resultant solution is **(FA & SA- 2 Marks)**
 - A) acidic
- B) basic
- C) Neutral
- D) Cannot be predicted

Answer:A

Solution:Step 1: Moles of NaOH

 $0.1 \text{ M} \times 0.050 \text{ L} = 0.005 \text{ mol}$

Step 2: Moles of H₂SO₄

 $0.1 \text{ M} \times 0.050 \text{ L} = 0.005 \text{ mol}$

Step 3: Reaction

H₂SO₄ needs 2 NaOH for full neutralization:

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

Step 4: Check limiting reagent

0.005 mol NaOH can neutralize only $0.0025 \text{ mol H}_2\text{SO}_4$

But we have 0.005 mol $H_2SO_4 \rightarrow 0.0025$ mol H_2SO_4 remains

Step 5: Result

Excess strong acid → Acidic solution

- 3. At 25° C, $[H_3O^+]$ is 4×10^{-5} M, the value of kw at that temperature is _____
 - A) 2.5×10^{-15} moles²/litre²
- B) 1.5×10^{-13} moles²/litre²
- C) 1×10^{-14} moles²/litre²
- D) $11.35 \times 10^{-12} \text{ moles}^2/\text{litre}^2$

Answer:C

Solution:The value of the ion product of water, (K_w) , is a constant at a given temperature. At 25°C, its value is universally accepted as: $K_w = 1 \times 10^{-14} \, \text{moles}^2/\text{litre}^2$

- 4. Which of the following solution will have a pH exactly equal to 8?
 - A) 10⁻⁸ M HCl solution at 25°C
- B) 10⁻⁸ M H⁺ solution at 25°C
- C) 2×10^{-6} M Ba(OH)₂ solution at 25° C D) 10^{-5} M NaOH solution at 25° C

Answer:B

Solution:The pH scale is a measure of the acidity or basicity of a solution. It is defined as: $pH = -log(H^+)$

The first option is a solution of 10^{-8} M HCl.

However, the concentration of HCl is 10^{-8} M,

which means the concentration of (H⁺)ions would also be 10⁻⁸ M.

In pure water at 25°C, the concentration of (H^+) is 10^{-7} M due

to the autoionization of water. Therefore, the total (H⁺)in this solution would be:

$$(H^+) = 10^{-8} + 10^{-7} = 1.1 \times 10^{-7} M$$

Now, calculating the pH: pH = $-\log(1.1 \times 10^{-7}) \approx 6.96$

The second option is a solution with a concentration of $10^{-8}\,\mathrm{M}\ (\mathrm{H}^{\scriptscriptstyle +})$

Here, we can directly use the concentration of (H⁺) to find the pH:

$$pH = -\log(10^{-8}) = 8$$

C)2×10⁻⁶ M Ba(OH), solution

Ba(OH), isastrongbasethatproducestwoOH-ionspermolecule.

$$[OH^{-}] = 2 \times [Ba(OH),] = 2 \times (2 \times 10^{-6} \text{ M}) = 4 \times 10^{-6} \text{ M}$$

$$pOH = -\log(4 \times 10^{-6}) \approx 5.40$$

$$pH = 14 - 5.40 = 8.60 (Incorrect)$$

D)10⁻⁵ M NaOH solution

 $NaOH\ is a strong base that produces one OH-ion permolecule.$

$$[OH^{-}] = [NaOH] = 10^{-5} M$$

$$pOH = -\log(10^{-5}) = 5$$

$$pH = 14 - 5 = 9(Incorrect)$$

5. 100ml of 0.1M H_2SO_4 is diluted to 250ml, then change in P^H value is

(FA & SA- 5 Marks / 8 Marks)

- A) 1.2010
- B) 1.6990
- C) 0.3979
- D) 6.6990

Answer:C

Solution:Step 1: Initial [H⁺]

H₂SO₄ is diprotic and strong acid:

$$[H^+]_{initial} = 2 \times 0.1 = 0.2 M$$

$$pH_{initial} = -\log(0.2) \approx 0.69897$$

Step 2: After dilution

Moles of H^+ =0.2 M×0.100 L=0.02 mol

Final volume = 250 ml = 0.250 L

$$[H^+]_{\text{final}} = \frac{0.02}{0.250} = 0.08 \,\text{M}$$

$$pH_{final} = -log(0.08) \approx 1.09691$$

Step 3: Change in pH

$$\Delta$$
pH = 1.09691 – 0.69897 \approx 0.39794

- 6. P^H of decimolar solution of NH_4OH is _____ (K_b for NH_4OH is 10^{-5})
 - A) 3

- B) 11
- C) 5

D) 12

Answer:B

Solution:We are given:

$$C = 0.1MNH_4OH(Weakbase)$$

$$K_b = 10^{-5}$$

Step 1: Find [OH -]

For a weak base:

$$[OH^{-}] = \sqrt{K_b C} = \sqrt{10^{-5} \times 0.1}$$

$$[OH^{-}] = \sqrt{10^{-6}} = 10^{-3} M$$

Step 2: Find p^{OH}

$$p^{OH} = -\log(10^{-3}) = 3$$

Step 3: Find pH

$$p^{H} = 14 - p^{OH} = 14 - 3 = 11$$

7. Number of [H₃O⁺] ions present in 20 ml of water at 25° is

B)
$$12.046 \times 10^{14}$$
 C) 12.046×10^{12} D) 9.0345×10^{22}

Answer:B

Solution:In pure water at 25° C, $[H_3O^+] = 1.0 \times 10^{-7} M$

Moles in 20 mL: $1.0 \times 10^{-7} \times 0.020 = 2.0 \times 10^{-9} mol$.

Number of ions = moles \times N_A = $2.0 \times 10^{-9} \times 6.022 \times 10^{23} = 1.2044 \times 10^{15} = 12.044 \times 10^{14}$

8. Equal volumes of two HCl solutions with PH values 3 & 4 are mixed. molarity of the resulting solution is _____

A)
$$5.5 \times 10^{-4}$$

B)
$$5.5 \times 10^{-7}$$

B)
$$5.5 \times 10^{-7}$$
 C) 2.75×10^{-6} D) 6.25×10^{-6}

Answer:A

Solution:

$$\begin{split} pH_1 &= 3 \Rightarrow [H^+]_1 = 10^{-3} \text{ M} \\ pH_2 &= 4 \Rightarrow [H^+]_2 = 10^{-4} \text{ M} \\ \text{Moles}_{\text{total}} &= (M_1 \times V_1) + (M_2 \times V_2) \\ \text{Moles}_{\text{total}} &= (10^{-3} \cdot V) + (10^{-4} \cdot V) \\ \text{Moles}_{\text{total}} &= V(10^{-3} + 10^{-4}) = V(0.001 + 0.0001) = \textbf{V}(\textbf{0.0011}) \text{ mol} \\ M_{\text{final}} &= \frac{\text{Moles}_{\text{total}}}{\text{Total Volume}} = \frac{V(0.0011)}{2V} M_{\text{final}} = \frac{0.0011}{2} = 0.00055 \text{ M} = \textbf{5.5} \times \textbf{10}^{-4} \text{ M} \end{split}$$

- 9. K_w of water at a cartain temperature is 9×10^{-14} moler² / litre². P^H of H_2O at that temperature is _____ (FA & SA- 3 Marks / 4 Marks)
 - A) 7

- B) 6.5229
- C) 5.4771
- D) 3.9216

Answer:B

Solution: We are given: $K_w = 9 \times 10^{-14} \,\mathrm{M}^2$

Step 1: Find [H $^{\scriptscriptstyle +}$] in pure water

In pure water:

$$[H^+] = \sqrt{K_w} = \sqrt{9 \times 10^{-14}}$$
 ducational Operating System $[H^+] = 3 \times 10^{-7} M$

Step 2: Find pH

$$pH = -log(3 \times 10^{-7})$$

$$pH = -log3 - log10^{-7}$$

$$pH = -0.4771 + 7 = 6.5229$$

10. Pure water ionise as

$$2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

At 25°C the pH of pure water is approximately 7.0 At 37°C its pH is:

A) More than 7.0 B) Less than 7.0 C) Equal to 7.0 D) None of these

Answer:B

Solution:When temperature increases (from 25°C \rightarrow 37°C):

The equilibrium shifts to the right (since the process absorbs heat).

So both $[H^+]$ and $[OH^-]$ increase.Hence, K_w increases

At
$$25^{\circ}\text{C} \to K_{w} = 1 \times 10^{-14}$$
, so pH = 7.0

At
$$37^{\circ}C \to K_w > 1 \times 10^{-14}$$

$$[H^+] > 1 \times 10^{-7}$$

pH < 7.0

- 11. Which of the following solution will have pH close to 1.0?
 - A) 100 ml of M/10 HCl + 100 ml of M/10 NaOH
 - B) 55 ml of M/10 HCl + 45 ml of M/10 NaOH
 - C) 10 ml of M/10 HCl + 90 ml of M/10 NaOH
 - D) 75 ml of M/5 HCl + 25 ml of M/5 NaOH.

Answer:D

Solution:

Option A:100 mL of M/10 HCl + 100 mL of M/10 NaOH Both have same moles of acid and base.

Complete neutralization \rightarrow solution is neutral \rightarrow pH = 7

Option B:55 mL of M/10 HCl + 45 mL of M/10 NaOH

Moles of HC1 =
$$0.055 \times \frac{1}{10} = 0.0055 \text{ mol}$$

Moles of NaOH =
$$0.045 \times \frac{1}{10} = 0.0045$$
 mol perating System

Excess $H^+ = 0.0055-0.0045=0.0010$ mol

Total volume = 55+45=100 mL = 0.1 L

$$[H^+] = \frac{0.001}{0.1} = 0.01M$$
$$pH = -\log(0.01) = 2$$

Option C:

10 mL of M/10 HCl + 90 mL of M/10 NaOH

Moles $HC1 = 0.01 \times 0.01 = 0.0001 \text{ mol}$

Moles NaOH = $0.01 \times 0.09 = 0.0009$ mol

Excess $OH^- = 0.0008 \text{ mol} \rightarrow \text{basic solution}$

Option D:75 mL of M/5 HCl + 25 mL of M/5 NaOH

Moles HCl = $0.075 \times 0.2 = 0.015$ mol

Moles NaOH = $0.025 \times 0.2 = 0.005$ mol

Excess $H^+ = 0.015 - 0.005 = 0.010 \text{ mol}$

Total volume = 0.075 + 0.025 = 0.100L

pH = -log(0.1) = 1

12. 10 mL of 10^{-6} M HCI solution is mixed with 90 mL $\rm H_2O$. pH will change approximately:

A) By one unit

B) By 0.3 unit

C) By 0.7 unit

D) By 0.1 unit

Answer:C

Solution:

Theinitial concentration of HClis 10^{-6} M. Since 10^{-6} M $\gg 10^{-7}$ M (H⁺ from water), we can approximate the initial pH by ignoring water's contribution:

$$pH_1 = -\log_{10}[H^+]_{initial} = -\log_{10}(10^{-6}) = 6.0$$

 $Final H^{\dagger} Concentration(C_2)$

Theacidisdilutedfrom $V_1 = 10 \text{ mL}$ to a total volume of $V_2 = 10 \text{ mL} + 90 \text{ mL} = 100 \text{ mL}$ Using the dilution formula $C_1 V_1 = C_2 V_2$:

$$[H^+]_{\text{diluted}} = 10^{-6} \text{ M} \times \frac{10 \text{ mL}}{100 \text{ mL}} = 10^{-7} \text{ M}$$

Since the diluted concentration of the acid (10⁻⁷M) is equal to the concentration of H⁺ from pure water (10⁻⁷M), we must consider the contribution from water's autoionization. The exact total H⁺ concentration [H⁺]₂ is found by solving:

$$[H^+]_2 = [H^+]_{acid} + [H^+]_{water} \Longrightarrow [H^+]_2 = 10^{-7} + x$$

Where x is the [OH-] from water. The final H⁺ concentration is approximately:

$$[H^+]_2 \approx 2 \times 10^{-7} \text{ M}$$

 $pH_2 = -\log_{10}(2 \times 10^{-7}) \approx 6.70$
 $\Delta pH = pH_2 - pH_1 = 6.70 - 6.0 = 0.70$

13. Number of H⁺ ions present in 10 mL of solution of pH = 3 are:

B)
$$6.02 \times 10^{18}$$

C)
$$6.02 \times 10^{13}$$

D)
$$6.02 \times 10^{10}$$

Answer:B

Solution:

GivenpH = 3

$$[H^+] = 10^{-pH} = 10^{-3} M$$

 $Moles = Molarity \times Volume (L)$

Moles of H⁺ = $(10^{-3} \text{ mol/L}) \times (0.010 \text{ L})$

Moles of $H^+ = 10^{-5}$ mol

Number of ions = $Moles \times N_{\Delta}$

Number of H⁺ ions = $(10^{-5} \text{ mol}) \times (6.02 \times 10^{23} \text{ ions/mol})$

Number of H⁺ ions = 6.02×10^{18}

JEE ADVANCED LEVEL

Multicorrect Answer Type

- 14. Which of the following statements are correct
 - A) heat liberated during the neutralisation reaction
 - B) When one mole of H⁺ ions react with one mole of OH⁻ ions the heat liberated is 13.7 kcal/mole
 - C) $CH_3COOH \rightleftharpoons CH_3COO^- + H^+ \Delta H = +0.3 \text{ k cal/mole}$
 - D) The number of equivalents of a solute present in one litre of solution is called Molarity

Answer:A,B,C

Solution:

A) Heat liberated during the neutralisation reaction

True — Neutralisation is always exothermic.

B) When one mole of H⁺ reacts with one mole of OH⁻ ions, the heat liberated is 13.7 kcal/mol

True — Enthalpy of neutralisation for a strong acid-strong base = 13.7 kcal/mol ($\sim 57 \text{ kJ/mol}$).

C) $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$, $\Delta H = +0.3 \text{ kcal/mol}$

True — Ionisation of a weak acid (acetic acid) is endothermic ($_{\Delta}$ H positive, small value).

D) The number of equivalents of solute present in one litre of solution is called Molarity

False — That defines Normality, not molarity

- 15. Which of the following statement is incorrect
 - A) At 25°C ionic product of water $\approx 1 \times 10^{-14}$ moles² / lit ²
 - B) Molarity × Number of litres of solution = Number of moles of solute
 - C) The unit of molarity is mol L or mol dm.
 - D) On adding an acid [H⁺] increases, as the ionic product of water decreases.

Answer:C,D

Solution:A) At 25°C, ionic product of water $^{\sim} 1 \times 10^{2} \text{ d mol}^2/\text{L}^2 \rightarrow \text{Correct}$

- B) Molarity × Litres of solution = Moles of solute → Correct
- C) Unit of molarity = mol L-1 or mol dm-1
- D)On adding an acid [H⁺] increases, as the ionic product of water is constant the [OH ⁻] decreases.

Statement Type

Assertion A: P^H of a solution changes from 6 to 7 when diluted by 10 times Reason R: If [H +] decreases 10 times, P^H increases by one unit.

Answer: A

Solution:When a solution is diluted 10 times, the concentration of [H⁺] decreases to one-tenth of its original value.

Since pH=-log[H $^+$] a tenfold decrease in [H $^+$] causes pH to increase by log(10)=1unit.

Hence, if pH was initially 6, it becomes 7 after dilution

17. Assertion A: P^H of a solution of CH₃COOH decreases on dilution. Reason R: On dilution, degree of ionization of CH₃COOH increases.

Answer: D

Solution:Assertion (A) is false, and Reason (R) is true. When a solution of CH₃COOH is diluted, the degree of ionization increases, which means more CH₃COOH molecules dissociate into H⁺ and CH₃COO⁻ ions, but the overall concentration of H⁺ ions decreases because the volume of the solution increases by a greater factor. Since pH is calculated as -log[H⁺], a decrease in [H⁺] leads to an increase in pH.

Comprehension Type

When a mixture of strong acids are present in the aqueous solutions, the

normality N of the mixture =
$$\frac{V_1N_1 + V_2N_2}{V_1 + V_2}$$
.

Where V_1 and N_1 are the volume and normality of first acid; V_2 and N_2 are the volume and normlaity of second acid.

pH = -log [N] = - log
$$\left[\frac{V_1 N_1 + V_2 N_2}{V_1 + V_2} \right]$$

When a mixture of strong bases are present in the aqueous solutions, the normalty N of the mixture.

$$= \frac{V_1 N_1 + V_2 N_2}{V_1 + V_2}$$

The [OH-] in the mixture = Normality of the mixture.

pOH = - log [N] = - log
$$\frac{V_1 N_1 + V_2 N_2}{V_1 + V_2}$$

- 18. 75ml of 0.2M HCl is mixed with 25ml of 1M HCl. To this solution 300ml of distilled water is added. What is the pH of the resultant solution?
 - A) 1
- B) 2
- C) 4
- D) 0.2

Answer:A

Solution:We have:

75 mL of 0.2 M HCl \rightarrow moles = 0.075×0.2 = 0.015mol

25 mL of 1 M HCl \rightarrow moles = $0.025 \times 1 = 0.025$ mol System

Total moles of HCl = 0.015+0.025=0.04 mol

Total volume after adding 300 mL water:75+25+300=400 mL = 0.4 L

Molarity =
$$\frac{0.04}{0.4} = 0.1 \,\text{M}$$

For strong acid, $[H^+] = 0.1M \Rightarrow pH = -\log_{10}(0.1) = 1$

- 19. Equal volumes of two solutions with $p^H = 3$ and $p^H = 11$ are mixed. Then the p^H of resulting solution is
 - A) 8
- B) 7
- C) 6
- D) 0

Answer:B

Solution:One solution has pH = $3 \rightarrow [H^+] = 10^{-3} \text{ M}$.

The other has pH = 11 \rightarrow pOH = 3 \rightarrow [OH⁻] = 10⁻³ M (so [H⁺] = 10⁻¹¹ M).

Equal volumes \rightarrow equal moles of H⁺ and OH⁻, so they neutralize completely \rightarrow resulting solution is essentially neutral (only the very diluted salt + water) \rightarrow pH $\tilde{~}$ 7

Integer Type

20. The highest acidic solution has a pH of _____

Answer:0

Solution: The highest acidic solution has a pH of 0. While pH values can theoretically go below 0 for very strong, concentrated acids, on the standard 0-14 scale, 0 represents the highest acidity.

Answer:13.3

Solution:At 50°C,
$$K_w = 5.5 \times 10^{-14}$$

$$pH + pOH = -log(K_w) = -log(5.5 \times 10^{-14}) = 13.3$$

Matrix Matching Type

 $22~\rm{K_{w}}$ under conditions of high temperature and pressure is 1.0 x $10^{\text{-}10}.$ Match the following

Column-I

Column-II

- A. Solution of pH 5.5
- p.Neutral
- B. Solution of pH 5
- q. Acidic
- C. Solution of pH 4
- r. $[OH^{-}] = 10^{-3}M$
- D. Solution of pH 7
- s. Basic

Answer:A-s,B-p,C-q,D-s,r

Solution:

$$K_w = 1.0 \times 10^{-10}$$
 Educational Operating System

$$pK_w = 10 \Rightarrow pH + pOH = 10$$

Neutral solution: pH=pOH=5

So,pH>5 are basic

pH<5 are acidic

- A. Solution of pH 5.5
- s. Basic
- B. Solution of pH 5
- p.Neutral
- C. Solution of pH 4
- q. Acidic
- D. Solution of pH 7
- s. Basic, r. $[OH^{-}] = 10^{-3}M$

LEARNERS TASK

Conceptual Understanding Questions (CUQ's)

- 1. Ionic product of water at 80° C is _____
 - A) 10 14 1 2 11 2 D 10 14 1
 - A) $>10^{-14} \text{ moles}^2/\text{litre}^2$ B) $<10^{-14} \text{ moles}^2/\text{litre}^2$ C) $10^{-14} \text{ moles}^2/\text{litre}^2$ D) none

Answer:A

Solution: K_w increases with temperature. At 25°C, $K_w = 10^{-14}$. At 80°C, $K_w > 10^{-14}$

- 2. P^H of 10⁻² M HCl solution is _____
 - A) 2
- B) 3

- C) 8
- D) 12

Answer:A

Solution:1. Identify [H⁺]

HCl is a strong acid, so it dissociates completely: $[H+]=10^{-2} M$

Calculate pH

$$p^{H} = -\log(10^{-2}) = 2$$

- 3. P^H of 10⁻³ M NaOH solution is _____
 - A) 3
- B) 13
- C) 11
- D) 10

Answer:C

Solution: 1. Identify [OH-]

NaOH is a strong base, so it dissociates completely:

$$[OH^{-}] = 10^{-3} M$$

$$p^{OH} = -\log(10^{-3}) = 3$$

3. Calculate pH

$$p^{H} = 14 - p^{OH} = 14 - 3 = 11$$

- 4. Conjugate base of NH₃ is _____
 - A) NH,+
- B) NH₄OH C) NH₂-
- D) OH-

Answer:C

Solution: When NH₃ loses a proton: $NH_3 \rightarrow NH_2^- + H^+$

- 5. At $75^{\circ}C$ $P^{H} + P^{OH}$
 - A) 14
- B) than 14
- C) less than 14 D) Can not be preidicted

Answer:C

Solution: 1. Relationship between pH and pOH

We know:

$$p^{H} + p^{OH} = pK_{w}$$
 $At25^{0}C, k_{w} = 1 \times 10^{-14}$

2. Effect of temperature

 K_{w} increases with temperature.

$$At75^{\circ}C > 10^{-14}$$

Thus:
$$p_{H} + p_{OH} < 14$$

- 6. P^H of 0.0015 M H_2SO_4 is ____
 - A) 3.5×10^{-2} B) 0.35
- C) 4.25
- D) 2.5229

Answer:D

Solution:1. Find [H⁺]

 H_2SO_4 is a strong diprotic acid: $[H^+] = 2 \times 0.0015 = 0.0030 M$

2. Calculate pH

$$pH = -log(0.0030)$$

$$pH = -log(3.0 \times 10^{-3})$$

$$pH = -[log3 + log10^{-3}]$$
Educational Operating System

$$pH = -[\log 3 - 3]$$

$$pH = -[0.4771 - 3] = -0.4771 + 3 = 2.5229$$

- 7. The solution which has the lowest p^H value is
 - A) 1M NaOH
- B) $1M K_2 SO_4$
- C) 1M HCl
- D) 1N CH₃COOH

Answer:C

Solution: 1 M HCl \rightarrow [H⁺] = 1 M \rightarrow pH = 0 (lowest)

- $1 \text{ M NaOH} \rightarrow \text{pH} = 14$
- $1 \text{ M K}_2\text{SO}_4 \rightarrow \text{neutral} \rightarrow \text{pH} = 7$
- 1 N CH₂COOH → weak acid, pH > 0
- 8. P^H of HCl solution is 4.6990 then $\lceil H^+ \rceil$ concetration is
 - A) 5×10^{-3}
- B) 3×10^{-5}
- C) 2×10^{-5}
- D) 1×10^{-4}

Answer:C

Solution: 1. Relationship between pH and [H⁺]

$$pH = -log[H^+]$$

$$[H^{_{^{+}}}] = 10^{^{-pH}}$$

2. Substitute given pH

$$[H^+] = 10^{-4.6990}$$

$$[H^+] = 0.0000199986 = 1.999 \times 10^{-5} \approx 2 \times 10^{-5}$$

9. P^H of H_2SO_4 is 2, then molarity of the acid is _____

Answer:B

Solution:pH of $H_2SO_4=2$

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$$

$$[H^+]=10^{-2}$$

$$2[H^+]=2 \times 10^{-2}=0.02$$

10. pH of 10 MHCl(aq) on Sorenson's scale is:

B) 0

C) 10

D) 5

Answer:B

Solution:

Educational Operating System

1. Identify [H⁺]

HCl is a strong acid, so: $[H^+]=10M$

2. Calculate pH: pH = $-\log(10) = -1$

Sorenson's scale ,pH=0 to 14,there is no -1

So, pH=0

JEE MAIN LEVEL

11. For pure water:

(FA & SA- 2 Marks)

- A) pH increases and pOH decreases with rise in temperature
- B) pH decreases and pOH increases with rise in temperature
- C) Both pH and pOH increase with rise in temperature
- D) Both pH and pOH decrease with rise in temperature

Answer:D

Solution:Step 1: Recall what happens to K_w with temperature

$$H_2O \rightleftharpoons H^+ + OH^-$$

This reaction is endothermic, so when temperature increases, K_w increases Step 2: Effect on $[H^+]$ and $[OH^-]$ in pure water

$$[H^{+}] = [OH^{-}] = \sqrt{K_{w}}$$

So as K_w increases, both [H⁺] and [OH⁻] increase.

Step 3: Effect on pH and pOH

$$pH = -log[H^+], pOH = -log[OH^-]$$

If [H⁺] and [OH⁻] increase, both pH and pOH decrease

- 12. An acid solution with pH = 6 at 25°C is diluted by 10² times. The pH of solution will:
 - A) Decrease by 2

- B) Increase by 2
- C) Decrease by 0.95 approximately
- D) Increase by 0.95 approximately

Answer:D

Solution:

Given: Initial pH = 6

So,
$$[H^+] = 10^{-6} \text{ M}$$

After dilution by (10²) times (i.e., 100 times),

$$[H^+]_{\text{new}} = \frac{10^{-6}}{100} = 10^{-8} \,\text{M}$$

But we must consider auto-ionization of water:

$$[H^+]_{total} = [H^+]_{acid} + [H^+]_{water}$$
tional Operating System

$$[H^{+}]_{water} = 10^{-7}M$$

$$[H^+]_{total} = 10^{-8} + 10^{-7} = 1.1 \times 10^{-7} M$$

$$pH = -log(1.1 \times 10^{-7}) \approx 6.96$$

Hence, the pH increases from 6 to ~6.95,

Increase by ~0.95**

- 13. 10 mL, of a strong acid solution of pH = 2.000 are mixed with 990 mL of another strong acid solution of pH = 4.000. The pH of the resulting solution will be:
 - A) 4.002
- B) 4.000
- C) 4.200
- D) 3.7

Answer:D

Solution: Solution 1: pH = $2.000 \rightarrow [H^+] = 1.00 \times 10^{-2} M$

Volume = 10 mL \rightarrow moles of H⁺ = $(1.00 \times 10^{-2}) \times 0.010 = 1.00 \times 10^{-4} \, mol$

Solution 2: pH =
$$4.000 \rightarrow [H^+] = 1.00 \times 10^{-4} M$$

Volume = 990 mL \rightarrow moles of H⁺ = $(1.00 \times 10^{-4}) \times 0.990 = 9.90 \times 10^{-5}$ mol

2. Total moles of H⁺

Total moles H $^{+}$ = $1.00 \times 10^{-4} + 9.90 \times 10^{-5} = 1.99 \times 10^{-4}$ mol

3. Total volume

$$V_{total} = 10 + 990 = 1000 \, mL = 1.000 \, L$$

4. Final [H⁺]

$$[H^+]_{\text{final}} = \frac{1.99 \times 10^{-4}}{1.000} = 1.99 \times 10^{-4} \text{ M}$$

5. Final pH

$$pH = -\log(1.99 \times 10^{-4}) \approx -\log(2.00 \times 10^{-4}) = 4 - \log2.00$$
$$\log 2.00 \approx 0.3010 \Rightarrow pH \approx 3.699$$

At 25°C K_h for BOH = 1.0 × 10⁻¹² . 0.01 M solution of BOH has [OH⁻]: 14.

A)
$$1.0 \times 10^{-6} \text{ M}$$

B)
$$1.0 \times 10^{-7} \text{ M}$$

B)
$$1.0 \times 10^{-7} \text{ M}$$
 C) $1.0 \times 10^{-5} \text{ M}$ D) $2.0 \times 10^{-6} \text{ M}$

D)
$$2.0 \times 10^{-6} \text{ M}$$

Answer:B

Solution: The reaction takes place as, $BOH \rightleftharpoons B^+ + OH^-$

The given values are, $K_b = 1.0 \times 10^{-12}$

$$[BOH] = 0.01M$$

$$K_b = \frac{[B^+][OH^-]}{[BOH]}$$
 Educational Operating System

For the equilibrium condition, $[B^+] = [OH^-]$

$$K_b = \frac{[OH^-]^2}{[BOH]}$$

$$1.0 \times 10^{-12} = \frac{\left[OH^{-}\right]^{2}}{0.01}$$

$$[OH]^{-2} = 1 \times 10^{-14}$$

$$OH^{-} = 1.0 \times 10^{-7} \text{ mol}$$

Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be 15. [AIEEE-2005] (FA & SA- 3 Marks / 4 Marks)

A)
$$3.98 \times 10^8$$

B)
$$3.88 \times 10^6$$

C)
$$3.68 \times 10^{-6}$$

D)
$$3.98 \times 10^{-6}$$

Answer:D

Solution:1. Formula

$$pH = -log[H^+]$$

 $[H^+] = 10^{-pH}$

2. Substitute pH = 5.4

$$[H^+] = 10^{-5.4} = 0.0000039811 = 3.98 \times 10^{-6} M$$

16. How many litres of water must be added to 1 litre an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2?

[JEE(Main) 2013]

- A) 0.1 L
- B) 0.9 L
- C) 2.0 L
- D) 9.0 L

Answer:D

Solution: Given:

Initial pH =
$$1 \rightarrow [H^+]_1 = 10^{-1} = 0.1M$$

Final pH =
$$2 \rightarrow [H^+]_2 = 10^{-2} = 0.01M$$

Initial volume = 1 L

Final volume = ?

Step 1: Apply dilution formula

$$M_1V_1 = M_2V_2$$

$$0.1 \times 1 = 0.01 \times V_2$$

$$V_2 = \frac{0.1}{0.01} = 10 L$$
Educational Operating System

Step 2: Water added

Water added = $V_2 - V_1 = 10 - 1 = 9L$

- 17. P^H of NaOH solution is 12. The amount of NaOH present in 2 litres of the solution is
 - A) 0.8gm
- B) 0.4gm
- C) 1.2gm
- D) 3.45gm

Answer:A

Solution:Given:pH = 12

$$pOH = 14 - 12 = 2$$

 $[OH^{-}] = 10^{-pOH} = 10^{-2} = 0.01M$

That means the NaOH concentration = 0.01 M, because each NaOH gives one OH⁻.

Now, Moles of NaOH = M x V = $0.01 \times 2 = 0.02$, mol

Molecular weight of NaOH = 40 g/mol

Mass = $0.02 \times 40 = 0.8 g$

18. pH of a sample of KOH and another of NaOH are 10 and 12 respectively. Their normalities are related as $N_{NaOH} = xN_{KOH}$. What is the value of x?

(FA & SA- 5 Marks / 8 Marks)

C)
$$10^{2}$$

D)
$$10^{-2}$$

Answer:C

Solution: Given: pH of KOH = 10, pH of NaOH = 12

For bases, [pOH = 14 - pH]

So, For KOH, pOH = 14 - 10 = 4

For NaOH, pOH = 14 - 12 = 2

Now, $OH^- = 10^{-pOH}$

 $[OH^{-}]_{KOH} = 10^{-4}M$

 $[OH^{-}]_{NaOH} = 10^{-2}M$

Normality (N) = concentration of OH⁻ (since both are monobasic bases):

 $N_{NaOH} = 10^{-2}M, N_{KOH} = 10^{-4}M$

 $Now, N_{NaOH} = x N_{KOH}$

 $10^{-2} = x \cdot 10^{-4}$

$$x = 10^2 = 100$$

19. 100 mL of 0.2 N NaOH is mixed with 100 mL 0.1 NHCl and the solution is made 1L. The pH of the solution is:

Answer:D

Solution:

NaOH: 0.2 N = 0.2 M. Moles in 100 mL = $0.2 \times 0.1 = 0.02$ mol.

HCl: 0.1 N = 0.1 M. Moles in $100 \text{ mL} = 0.1 \times 0.1 = 0.01 \text{ mol}$.

Neutralization: 0.02-0.01=0.01 mol OH- remains (excess base).

Final volume = 1.00 L \rightarrow [OH $^{-}$]=0.01 M.

pOH = -log 0.01 = 2.

pH = 14-2=12

- 20. At 90° C, pure water has $[H_3O]^+$ = 10° mole lts°. Value of Kw at 90° C
 - A) 10^{-14}
- B) 10⁻⁸
- C) 10^{-6}

D) 10⁻¹²

Answer:D

Solution:At 90°C, pure water has $[H_3O^+]=10^{-6}$ M

In pure water, $[H_3O^+]=[OH^-]$

So: $K_{...} = [H_2O^+][OH^-] = (10^{-6})(10^{-6}) = 10^{-12}$

JEE ADVANCED LEVEL

Multicorrect Answer Type

- 21. The correct statements
 - A) P^H of water decreases with increase in temperature

- B) P^H of water remains same with increase in temperature
- C)PH of water decreases with the addition of acid
- D)Degree of dissociation of water is independent of temperature

Answer:A,C

Solution:

A is correct: When water is heated, the dissociation of water molecules into H+ and OH- ions increases, leading to a decrease in pH.

C is correct: Adding an acid to water increases the concentration of H+ ions, which directly lowers the pH.

B is incorrect: The pH of water does not stay constant with temperature increase; it actually decreases.

D is incorrect: The degree of dissociation of water is temperature-dependent, meaning more water molecules dissociate into ions as the temperature rises.

Statement/Reason & Assertion Type

22. **Assertion A:** P^H of pure water increases with increase in temperature.

Reason R: Degree of dissociation of water increases with increase in temperature considerable.

Answer:D

Solution: Actually, pH of pure water decreases with temperature because K_w increases $[H^+]$ increases.

Assertion is false.

Reason: Degree of dissociation of water increases with increase in temperature considerably. This is true

23. **Assertion A:** P^H of 10^{-8} HCl is not equal to 8.

Reason R: HCl does not ionize completely in very dilute aqueous solution Answer:C

Solution:

Assertion: pH of 10⁻⁸ M HCl is not equal to 8.

True, because at such low concentration, contribution from water's $H^+ \sim 10^{-7} M$ is significant.

Actual $[H^+] \approx 10^{-8} + 10^{-7} = 1.1 \times 10^{-7} \text{ M} \implies pH \approx 6.96, \text{ not } 8.$

Reason: HCl does not ionize completely in very dilute aqueous solution.

False — HCl is a strong acid and ionizes completely at all dilutions.

The real reason is the H ⁺ from water autoionization.

Comprehension Type

Phosphoric acid is used as a fertiliser for agriculture and an aqueous soil digesting. 1.00×10^{-3} M phosphoric acid is found to have pH = 7. Zinc is an essential micronutrient for plant growth. Plants can absorb zinc in water soluble from only. In the given soil, zinc phosphate is only the source of zinc and phosphate ions

24. Molar concentration of phosphate ion in the soil with pH 7 is:

A)
$$1.2 \times 10^{-4} \text{ M}$$

B)
$$2.2 \times 10^{-4} \text{ M}$$

C)
$$1 \times 10^{-3} \text{ M}$$

A)
$$1.2 \times 10^{-4} \text{ M}$$
 B) $2.2 \times 10^{-4} \text{ M}$ C) $1 \times 10^{-3} \text{ M}$ D) $1.1 \times 10^{-10} \text{ M}$

Answer:B

Solution: $H_3PO_4 \rightleftharpoons 3H^+ + PO_4^{3-}$

overall dissociation constant $K = K_{a1}K_{a2}K_{a3}$

$$K_{a1} = 7.59 \times 10^{-3}, K_{a2} = 6.17 \times 10^{-8}, K_{a3} = 4.79 \times 10^{-13}$$

$$K = K_{a1}K_{a2}K_{a3} = (7.59 \times 10^{-3})(6.17 \times 10^{-8})(4.79 \times 10^{-13}) \approx 2.25 \times 10^{-22}$$

$$AtpH = 7, [H^{+}] = 10^{-7} M$$

$$H_{3}PO_{4} \rightleftharpoons 3H^{+} + PO_{4}^{3-}$$

$$K = \frac{[H^{+}]^{3}[PO_{4}^{3-}]}{[H_{3}PO_{4}]}$$

$$\Rightarrow [PO_{4}^{3-}] = \frac{K[H_{3}PO_{4}]}{[H^{+}]^{3}}$$

$$[PO_{4}^{3-}] = \frac{[2.25 \times 10^{-22}][(1 \times 10^{-3}]]}{[10^{-7}]^{3}} = 2.2 \times 10^{-4}$$

Concentration of [Zn²⁺] in the soil is: 25.

A)
$$9.1 \times 10^{-5} \text{ M}$$

B)
$$5.7 \times 10^{-9} \text{ M}$$

A)
$$9.1 \times 10^{-5} \text{ M}$$
 B) $5.7 \times 10^{-9} \text{ M}$ C) $4.0 \times 10^{-10} \text{ M}$ D) $3.0 \times 10^{-6} \text{ M}$

D)
$$3.0 \times 10^{-6} \text{ M}$$

Answer:B

Solution:

$$Zn_3(PO_4)_2(s) \rightleftharpoons 3Zn^{2+} + 2PO_4^{3-}$$

 $K_{sp} = [Zn^{2+}]^3[PO_4^{3-}]^2$

For
$$Zn_3(PO_4)_2$$
, $K_{sp} = 9.0 \times 10^{-33}$

$$\begin{split} K_{sp} &= [Zn^{2+}]^3 [PO_4^{\ 3-}]^2 \\ 9.0 \times 10^{-33} &= [Zn^{2+}]^3 [2.2 \times 10^{-4}]^2 \\ [Zn^{2+}]^3 &= \frac{9.0 \times 10^{-33}}{[2.2 \times 10^{-4}]^2} \\ [Zn^{2+}]^3 &= 0.185 \times 10^{-24} \\ Zn^{2+} &= 5.7 \times 10^{-9} \end{split}$$

Educational Operating System

Integer Type

26 If pH of solution of NaOH is 12.0 the pH of $\rm H_2SO_4$ solution of same molarity will be

Answer:1.7

Solution:Step 1: For NaOH solution,pH = 12

$$pOH = 14 - 12 = 2$$

$$[OH-] = 10^{-2} = 0.01M$$

So, NaOH molarity = 0.01 M

Step 2: For H₂SO₄ solution of same molarity = 0.01 M

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$$

Strong acid — gives 2 H⁺ per molecule

$$[H^+] = 2 \times 0.01 = 0.02M$$

$$pH = -\log(0.02) = 1.7$$

27 10ml of 0.1 N HCl is added to 990ml solution of NaCl the p^H of resulting solution

Answer:3

Solution:Step 1: Moles of H^+ from HCl

$$N = 0.1, V = 10mL = 0.01L$$

Moles of
$$H^+ = 0.1 \times 0.01 = 0.001$$

Step 2: Total volume = 10 + 990 = 1000 mL = 1L
$$[H^+] = \frac{0.001}{1} = 0.001M = 10^{-3}$$
$$pH = -\log(10^{-3}) = 3$$

Matrix Matching Type

28	SET -1 (ConC)	SET-2 (pH)			
	I)10 ⁻¹ M HCl	A) 0.6990			
	II) 10 ⁻¹ M H ₂ SO ₄	B) Between 1&2			
	III) 10 ⁻¹ M CH ₃ COOH	C) Between 6&7			
	IV) 10 ⁻⁸ M HCl solution	D)1			

Answer:I-D,II-A,III-B,IV-C

Solution:

I)
$$10^{-1}$$
 M HCl pH = $-\log(0.1)$ = 1
II) 10^{-1} M H₂SO₄ [H⁺] = 2×10^{-1} = 0.2
pH = $-\log(0.2)$ = 0.699
III) 10^{-1} M CH₃COOH (Weak acid) Partially ionized
pH between 1 and 2 contained Operating System
IV) 10^{-8} M HCl
Very dilute acid, affected by water autoionization
pH slightly below 7 (~6.96)

KEY

					TEACHING	TASK				
	1	2	3	4	5	6	7	8	9	10
С		Α	С	В	С	В	В	Α	В	В
	11	12	13	14	15	16	17	18	19	20
D		С	В	A,B,C	C,D	Α	D	Α	В	0
	21	22								
	13.3 A-s,B-p,C-q,D-s,r									
				LEARNERS TASK						
				CONCEPT	CONCEPTUAL UNDERSTANDING QUESTIONS (CUQ'S)					
	1	2	3	4	5	6	7	8	9	10
Α		Α	С	С	С	D	С	С	В	В
				JEE MAINS	EE MAINS LEVEL QUESTIONS					
	11	12	13	14	15	16	17	18	19	20
D		D	D	В	D	D	Α	С	D	D
				JEE ADVANCED LE <mark>VE</mark> L QUESTIONS						
	21	22	23	24	25	26	27	28		
A,C		D	С	В	В	1.7	3	I-D,II-A,III	-B,IV-C	